×

On signal reconstruction from FROG measurements. (English) Zbl 1454.94023

Summary: Phase retrieval refers to recovering a signal from its Fourier magnitude. This problem arises naturally in many scientific applications, such as ultra-short laser pulse characterization and diffraction imaging. Unfortunately, phase retrieval is ill-posed for almost all one-dimensional signals. In order to characterize a laser pulse and overcome the ill-posedness, it is common to use a technique called Frequency-Resolved Optical Gating (FROG). In FROG, the measured data, referred to as FROG trace, is the Fourier magnitude of the product of the underlying signal with several translated versions of itself. The FROG trace results in a system of phaseless quartic Fourier measurements. In this paper, we prove that it suffices to consider only three translations of the signal to determine almost all bandlimited signals, up to trivial ambiguities. In practice, one usually also has access to the signal’s Fourier magnitude. We show that in this case only two translations suffice. Our results significantly improve upon earlier work.

MSC:

94A12 Signal theory (characterization, reconstruction, filtering, etc.)
42B10 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Millane, R. P., Phase retrieval in crystallography and optics, J. Opt. Soc. Amer. A, 7, 3, 394-411 (1990)
[2] Elser, V.; Lan, T.-Y.; Bendory, T., Benchmark problems for phase retrieval, arXiv preprint · Zbl 1421.82041
[3] Rabiner, L. R.; Juang, B.-H., Fundamentals of Speech Recognition, vol. 14 (1993), PTR Prentice Hall Englewood Cliffs
[4] Baykal, B., Blind channel estimation via combining autocorrelation and blind phase estimation, IEEE Trans. Circuits Syst. I. Regul. Pap., 51, 6, 1125-1131 (2004)
[5] Fienup, C.; Dainty, J., Phase retrieval and image reconstruction for astronomy, (Image Recovery: Theory and Application (1987)), 231-275
[6] Bendory, T.; Boumal, N.; Ma, C.; Zhao, Z.; Singer, A., Bispectrum inversion with application to multireference alignment, IEEE Trans. Signal Process., 66, 4, 1037-1050 (2017) · Zbl 1414.94066
[7] Shechtman, Y.; Eldar, Y. C.; Cohen, O.; Chapman, H. N.; Miao, J.; Segev, M., Phase retrieval with application to optical imaging: a contemporary overview, IEEE Signal Process. Mag., 32, 3, 87-109 (2015)
[8] Bendory, T.; Beinert, R.; Eldar, Y. C., Fourier phase retrieval: uniqueness and algorithms, (Compressed Sensing and its Applications (2017), Springer), 55-91
[9] Huang, K.; Eldar, Y. C.; Sidiropoulos, N. D., Phase retrieval from 1D Fourier measurements: convexity, uniqueness, and algorithms, IEEE Trans. Signal Process., 64, 23, 6105-6117 (2016) · Zbl 1414.94252
[10] Jaganathan, K.; Oymak, S.; Hassibi, B., Sparse phase retrieval: convex algorithms and limitations, (2013 IEEE International Symposium on Information Theory Proceedings. 2013 IEEE International Symposium on Information Theory Proceedings, ISIT (2013), IEEE), 1022-1026
[11] Beinert, R.; Plonka, G., Ambiguities in one-dimensional discrete phase retrieval from Fourier magnitudes, J. Fourier Anal. Appl., 21, 6, 1169-1198 (2015) · Zbl 1388.42004
[12] Beinert, Robert; Plonka, Gerlind, Enforcing uniqueness in one-dimensional phase retrieval by additional signal information in time domain, Appl. Comput. Harmon. Anal., 45, 3, 505-525 (2018) · Zbl 1394.42001
[13] Candes, E. J.; Eldar, Y. C.; Strohmer, T.; Voroninski, V., Phase retrieval via matrix completion, SIAM Rev., 57, 2, 225-251 (2015) · Zbl 1344.49057
[14] Jaganathan, K.; Eldar, Y. C.; Hassibi, B., Phase retrieval with masks using convex optimization, (2015 IEEE International Symposium on Information Theory. 2015 IEEE International Symposium on Information Theory, ISIT (2015), IEEE), 1655-1659
[15] Iwen, M. A.; Preskitt, B.; Saab, R.; Viswanathan, A., Phase retrieval from local measurements: improved robustness via eigenvector-based angular synchronization, arXiv preprint · Zbl 07140142
[16] Bendory, T.; Eldar, Y. C.; Boumal, N., Non-convex phase retrieval from STFT measurements, IEEE Trans. Inform. Theory, 64, 1, 467-484 (2018) · Zbl 1390.94093
[17] Jaganathan, K.; Eldar, Y. C.; Hassibi, B., STFT phase retrieval: uniqueness guarantees and recovery algorithms, IEEE J. Sel. Top. Signal Process., 10, 4, 770-781 (2016)
[18] Eldar, Y. C.; Sidorenko, P.; Mixon, D. G.; Barel, S.; Cohen, O., Sparse phase retrieval from short-time Fourier measurements, IEEE Signal Process. Lett., 22, 5, 638-642 (2015)
[19] Bojarovska, I.; Flinth, A., Phase retrieval from Gabor measurements, J. Fourier Anal. Appl., 22, 3, 542-567 (2016) · Zbl 1341.42049
[20] Griffin, D.; Lim, J., Signal estimation from modified short-time Fourier transform, IEEE Trans. Acoust. Speech Signal Process., 32, 2, 236-243 (1984)
[21] Pfander, G. E.; Salanevich, P., Robust phase retrieval algorithm for time-frequency structured measurements, arXiv preprint · Zbl 1524.49068
[22] Trebino, R., Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (2012), Springer Science Business Media
[23] Trebino, R.; DeLong, K. W.; Fittinghoff, D. N.; Sweetser, J. N.; Krumbügel, M. A.; Richman, B. A.; Kane, D. J., Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating, Rev. Sci. Instrum., 68, 9, 3277-3295 (1997)
[24] DeLong, K.; Trebino, R.; Hunter, J.; White, W., Frequency-resolved optical gating with the use of second-harmonic generation, J. Opt. Soc. Am. B, 11, 11, 2206-2215 (1994)
[25] Bendory, T.; Sidorenko, P.; Eldar, Y. C., On the uniqueness of FROG methods, IEEE Signal Process. Lett., 24, 5, 722-726 (2017)
[26] O’Shea, P.; Akturk, S.; Kimmel, M.; Trebino, R., Practical issues in ultra-short-pulse measurements with ‘GRENOUILLE’, Appl. Phys. B, 79, 6, 683-691 (2004)
[27] Seifert, B.; Stolz, H.; Tasche, M., Nontrivial ambiguities for blind frequency-resolved optical gating and the problem of uniqueness, J. Opt. Soc. Am. B, 21, 5, 1089-1097 (2004)
[28] Conca, A.; Edidin, D.; Hering, M.; Vinzant, C., An algebraic characterization of injectivity in phase retrieval, Appl. Comput. Harmon. Anal., 38, 2, 346-356 (2015) · Zbl 1354.42003
[29] Trebino, R.; Kane, D. J., Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating, J. Opt. Soc. Amer. A, 10, 5, 1101-1111 (1993)
[30] Sidorenko, P.; Lahav, O.; Avnat, Z.; Cohen, O., Ptychographic reconstruction algorithm for frequency-resolved optical gating: super-resolution and supreme robustness, Optica, 3, 12, 1320-1330 (2016)
[31] Kane, D. J., Principal components generalized projections: a review, J. Opt. Soc. Amer. B, 25, 6, A120-A132 (2008)
[32] Boumal, N.; Mishra, B.; Absil, P.-A.; Sepulchre, R., Manopt, a Matlab toolbox for optimization on manifolds, J. Mach. Learn. Res., 15, 1, 1455-1459 (2014) · Zbl 1319.90003
[33] Candes, E. J.; Li, X.; Soltanolkotabi, M., Phase retrieval via Wirtinger flow: theory and algorithms, IEEE Trans. Inform. Theory, 61, 4, 1985-2007 (2015) · Zbl 1359.94069
[34] Chen, Y.; Candès, E. J., Solving random quadratic systems of equations is nearly as easy as solving linear systems, Comm. Pure Appl. Math., 70, 5, 822-883 (2017) · Zbl 1379.90024
[35] Sun, J.; Qu, Q.; Wright, J., A geometric analysis of phase retrieval, (2016 IEEE International Symposium on Information Theory. 2016 IEEE International Symposium on Information Theory, ISIT (2016), IEEE), 2379-2383
[36] Wang, G.; Giannakis, G. B.; Eldar, Y. C., Solving systems of random quadratic equations via truncated amplitude flow, IEEE Trans. Inform. Theory, 64, 2, 773-794 (2018) · Zbl 1390.90451
[37] Wong, T. C.; Ratner, J.; Chauhan, V.; Cohen, J.; Vaughan, P. M.; Xu, L.; Consoli, A.; Trebino, R., Simultaneously measuring two ultrashort laser pulses on a single-shot using double-blind frequency-resolved optical gating, J. Opt. Soc. Amer. B, 29, 6, 1237-1244 (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.