×

zbMATH — the first resource for mathematics

Theoretical perspective on the route to turbulence in a pipe. (English) Zbl 1454.76047
Summary: The route to turbulence in pipe flow is a complex, nonlinear, spatiotemporal process for which an increasingly clear understanding has emerged in recent years. This paper presents a theoretical perspective on the problem, focusing on what can be understood from relatively few physical features and models that encompass these features. The paper proceeds step-by-step with increasing detail about the transition process, first discussing the relationship to phase transitions and then exploiting an even deeper connection between pipe flow and excitable and bistable media. In the end a picture emerges for all stages of the transition process, from transient turbulence, to the onset of sustained turbulence in a percolation transition, to the modest and then rapid expansion of turbulence, ultimately leading to fully turbulent pipe flow.

MSC:
76F06 Transition to turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Allhoff, K. T.; Eckhardt, B., Directed percolation model for turbulence transition in shear flows, Fluid Dyn. Res., 44, 3, (2012) · Zbl 1309.76104
[2] Avila, K.; Moxey, D.; De Lozar, A.; Avila, M.; Barkley, D.; Hof, B., The onset of turbulence in pipe flow, Science, 333, 6039, 192-196, (2011) · Zbl 1411.76035
[3] Avila, M.; Willis, A. P.; Hof, B., On the transient nature of localized pipe flow turbulence, J. Fluid Mech., 646, 127-136, (2010) · Zbl 1189.76262
[4] Bandyopadhyay, P. R., Aspects of the equilibrium puff in transitional pipe flow, J. Fluid Mech., 163, 439-458, (1986)
[5] Barkley, D., Simplifying the complexity of pipe flow, Phys. Rev. E, 84, 1, (2011)
[6] Barkley, D., Modeling the transition to turbulence in shear flows, J. Phys.: Conf. Ser., 318, 3, (2011)
[7] Barkley, D., Pipe flow as an excitable medium, Rev. Cub. Fis., 29, 1E27, (2012)
[8] Barkley, D.; Song, B.; Mukund, V.; Lemoult, G.; Avila, M.; Hof, B., The rise of fully turbulent flow, Nature, 526, 7574, 550-553, (2015)
[9] Barkley, D.; Tuckerman, L. S., Mean flow of turbulent – laminar patterns in plane Couette flow, J. Fluid Mech., 576, 109-137, (2007) · Zbl 1124.76018
[10] Chantry, M.; Tuckerman, L. S.; Barkley, D., Turbulent – laminar patterns in shear flows without walls, J. Fluid Mech., 791, R8, (2016) · Zbl 1382.76106
[11] Chaté, H.; Manneville, P., Transition to turbulence via spatiotemporal intermittency, Phys. Rev. Lett., 58, 2, 112-115, (1987)
[12] Chomaz, J.-M., Global instabilities in spatially developing flows: non-normality and nonlinearity, Annu. Rev. Fluid Mech., 37, 357-392, (2005) · Zbl 1117.76027
[13] Chossat, P.; Iooss, G., Primary and secondary bifurcations in the Couette-Taylor problem, Japan J. Appl. Math., 2, 1, 37-68, (1985) · Zbl 0607.76051
[14] Coles, D., Interfaces and intermittency in turbulent shear flow, Méc. Turbul., 108, 108, 229-250, (1962)
[15] Darbyshire, A. G.; Mullin, T., Transition to turbulence in constant-mass-flux pipe-flow, J. Fluid Mech., 289, 83-114, (1995)
[16] Doering, C. R., A stochastic partial differential equation with multiplicative noise, Phys. Lett. A, 122, 3-4, 133-139, (1987)
[17] Van Doorne, C. W.; Westerweel, J., The flow structure of a puff, Phil. Trans. R. Soc. Lond. A, 367, 1888, 489-507, (2009) · Zbl 1221.76063
[18] Duguet, Y.; Schlatter, P., Oblique laminar – turbulent interfaces in plane shear flows, Phys. Rev. Lett., 110, 3, (2013)
[19] Duguet, Y.; Willis, A. P.; Kerswell, R. R., Transition in pipe flow: the saddle structure on the boundary of turbulence, J. Fluid Mech., 613, 255-274, (2008) · Zbl 1151.76495
[20] Duguet, Y.; Willis, A. P.; Kerswell, R. R., Slug genesis in cylindrical pipe flow, J. Fluid Mech., 663, 180-208, (2010) · Zbl 1205.76126
[21] Eckert, M., The troublesome birth of hydrodynamic stability theory: Sommerfeld and the turbulence problem, Eur. Phys. J. H, 35, 1, 29-51, (2010)
[22] Eckhardt, B.; Schneider, T. M.; Hof, B.; Westerweel, J., Turbulence transition in pipe flow, Annu. Rev. Fluid Mech., 39, 447-468, (2007) · Zbl 1296.76062
[23] Faisst, H.; Eckhardt, B., Traveling waves in pipe flow, Phys. Rev. Lett., 91, 22, (2003)
[24] Faisst, H.; Eckhardt, B., Sensitive dependence on initial conditions in transition to turbulence in pipe flow, J. Fluid Mech., 504, 343-352, (2004) · Zbl 1116.76362
[25] Feigenbaum, M. J., Quantitative universality for a class of nonlinear transformations, J. Stat. Phys., 19, 1, 25-52, (1978) · Zbl 0509.58037
[26] Flores, G., Stability analysis for the slow travelling pulse of the Fitzhugh-Nagumo system, SIAM J. Math. Anal., 22, 2, 392-399, (1991) · Zbl 0716.34057
[27] Goldenfeld, N.; Guttenberg, N.; Gioia, G., Extreme fluctuations and the finite lifetime of the turbulent state, Phys. Rev. E, 81, 3, (2010)
[28] Gollub, J. P.; Swinney, H. L., Onset of turbulence in a rotating fluid, Phys. Rev. Lett., 35, 14, 927, (1975)
[29] Hinrichsen, H., Non-equilibrium critical phenomena and phase transitions into absorbing states, Adv. Phys., 49, 7, 815-958, (2000)
[30] Hodgkin, A. L.; Huxley, A. F., A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. Lond., 117, 4, 500-544, (1952)
[31] Hof, B.; Juel, A.; Mullin, T., Scaling of the turbulence transition threshold in a pipe, Phys. Rev. Lett., 91, 24, (2003) · Zbl 1049.76511
[32] Hof, B.; De Lozar, A.; Avila, M.; Tu, X.; Schneider, T. M., Eliminating turbulence in spatially intermittent flows, Science, 327, 5972, 1491-1494, (2010)
[33] Hof, B.; Westerweel, J.; Schneider, T. M.; Eckhardt, B., Finite lifetime of turbulence in shear flows, Nature, 443, 7107, 59-62, (2006)
[34] Holzner, M.; Song, B.; Avila, M.; Hof, B., Lagrangian approach to laminar – turbulent interfaces in transitional pipe flow, J. Fluid Mech., 723, 140-162, (2013) · Zbl 1287.76121
[35] Hopf, E., A mathematical example displaying features of turbulence, Commun. Pure Appl. Maths, 1, 4, 303-322, (1948) · Zbl 0031.32901
[36] Itano, T.; Toh, S., The dynamics of bursting process in wall turbulence, J. Phys. Soc. Japan, 70, 3, 703-716, (2001)
[37] Jalife, J., Ventricular fibrillation: mechanisms of initiation and maintenance, Annu. Rev. Phys. Chem., 62, 1, 25-50, (2000)
[38] Joseph, D. D.1976Stability of Fluid Motions I, , vol. 27. Springer. · Zbl 0345.76022
[39] Kaneko, K., Spatiotemporal intermittency in coupled map lattices, Prog. Theor. Phys., 74, 5, 1033-1044, (1985) · Zbl 0979.37505
[40] Kawahara, G.; Uhlmann, M.; Van Veen, L., The significance of simple invariant solutions in turbulent flows, Annu. Rev. Fluid Mech., 44, 1, 203-225, (2012) · Zbl 1352.76031
[41] Keener, J.; Sneyd, J., Mathematical Physiology I: Cellular Physiology, (2008), Springer · Zbl 1273.92017
[42] Landau, L. D.; Lifshitz, E. M., Volume 6 of A Course of Theoretical Physics, (1959), Pergamon Press
[43] Landau, L. D., On the problem of turbulence, Dokl. Akad. Nauk SSSR, 44, 8, 339-349, (1944)
[44] Lemoult, G.; Gumowski, K.; Aider, J.-L.; Wesfreid, J. E., Turbulent spots in channel flow: an experimental study, Eur. Phys. J. E, 37, 25, (2014)
[45] Lemoult, G.; Shi, L.; Avila, K.; Jalikop, S. V.; Avila, M.; Hof, B., Directed percolation phase transition to sustained turbulence in Couette flow, Nat. Phys., 12, 3, 254-258, (2016)
[46] Lindgren, E. R., The transition process and other phenomena in viscous flow, Ark. Fys., 12, 1-169, (1957)
[47] Lindgren, E. R., Propagation velocity of turbulent slugs and streaks in transition pipe flow, Phys. Fluids, 12, 2, 418-425, (1969)
[48] Manneville, P., On the transition to turbulence of wall-bounded flows in general, and plane Couette flow in particular, Eur. J. Mech. (B/Fluids), 49, 345-362, (2015) · Zbl 1408.76274
[49] Manneville, P., Transition to turbulence in wall-bounded flows: Where do we stand?, Bull. JSME, 3, 2, 15-00684, (2016)
[50] Marschler, C.; Vollmer, J., Unidirectionally coupled map lattices with nonlinear coupling: Unbinding transitions and superlong transients, SIAM J. Appl. Dyn. Syst., 13, 3, 1137-1151, (2014) · Zbl 1326.76042
[51] Mckeon, B. J.; Swanson, C. J.; Zagarola, M. V.; Donnelly, R. J.; Smits, A. J., Friction factors for smooth pipe flow, J. Fluid Mech., 511, 41-44, (2004) · Zbl 1061.76503
[52] Mellibovsky, F.; Meseguer, A.; Schneider, T. M.; Eckhardt, B., Transition in localized pipe flow turbulence, Phys. Rev. Lett., 103, 5, (2009)
[53] Meseguer, A.; Trefethen, L. N., Linearized pipe flow to Reynolds number 107, J. Comput. Phys., 186, 1, 178-197, (2003) · Zbl 1047.76565
[54] Moxey, D.; Barkley, D., Distinct large-scale turbulent-laminar states in transitional pipe flow, Proc. Natl Acad. Sci. USA, 107, 18, 8091-8096, (2010)
[55] Narasimha, R.; Sreenivasan, K. R., Relaminarization of fluid flows, Adv. Appl. Mech., 19, 221-309, (1979)
[56] Newell, A. C.; Whitehead, J. A., Finite bandwidth, finite amplitude convection, J. Fluid Mech., 38, 2, 279-303, (1969) · Zbl 0187.25102
[57] Nishi, M.; Ünsal, B.; Durst, F.; Biswas, G., Laminar-to-turbulent transition of pipe flows through puffs and slugs, J. Fluid Mech., 614, 425, (2008) · Zbl 1178.76041
[58] Orr, W. M.’F., The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part II: a viscous liquid, Proc. R. Irish Acad. A, 27, 69-138, (1907)
[59] Peixinho, J.; Mullin, T., Decay of turbulence in pipe flow, Phys. Rev. Lett., 96, 9, (2006) · Zbl 1114.76304
[60] Pomeau, Y., Front motion, metastability and subcritical bifurcations in hydrodynamics, Physica D, 23, 1-3, 3-11, (1986)
[61] Pomeau, Y., The transition to turbulence in parallel flows: a personal view, C. R. Méc., 343, 3, 210-218, (2015)
[62] Pope, S. B., Turbulent Flows, (2000), Cambridge University Press · Zbl 0966.76002
[63] Reynolds, O., An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels, Phil. Trans. R. Soc. Lond. A, 174, 935-982, (1883) · JFM 16.0845.02
[64] Rinzel, J.; Terman, D., Propagation phenomena in a bistable reaction-diffusion system, SIAM J. Appl. Maths, 42, 5, 1111-1137, (1982) · Zbl 0522.92004
[65] Rotta, J., Experimenteller Beitrag zur Entstehung turbulenter Strömung im Rohr, Ing-Arch., 24, 4, 258-281, (1956)
[66] Ruelle, D.; Takens, F., On the nature of turbulence, Commun. Math. Phys., 20, 3, 167-192, (1971) · Zbl 0223.76041
[67] Salwen, H.; Cotton, F. W.; Grosch, C. E., Linear stability of poiseuille flow in a circular pipe, J. Fluid Mech., 98, 2, 273-284, (1980) · Zbl 0428.76035
[68] Samanta, D.; De Lozar, A.; Hof, B., Experimental investigation of laminar turbulent intermittency in pipe flow, J. Fluid Mech., 681, 193-204, (2011) · Zbl 1241.76047
[69] Schlichting, H., Boundary-Layer Theory, (1968), McGraw-Hill
[70] Schneider, T.; Eckhardt, B.; Yorke, J., Turbulence transition and the edge of chaos in pipe flow, Phys. Rev. Lett., 99, 3, (2007)
[71] Segel, L. A., Distant side-walls cause slow amplitude modulation of cellular convection, J. Fluid Mech., 38, 1, 203-224, (1969) · Zbl 0179.57501
[72] Shih, H.-Y.; Hsieh, T.-L.; Goldenfeld, N., Ecological collapse and the emergence of travelling waves at the onset of shear turbulence, Nat. Phys., 12, 245-248, (2016)
[73] Shimizu, M.; Kida, S., A driving mechanism of a turbulent puff in pipe flow, Fluid Dyn. Res., 41, 4, (2009) · Zbl 1422.76107
[74] Shimizu, M.; Manneville, P.; Duguet, Y.; Kawahara, G., Splitting of a turbulent puff in pipe flow, Fluid Dyn. Res., 46, 6, (2014)
[75] Sipos, M.; Goldenfeld, N., Directed percolation describes lifetime and growth of turbulent puffs and slugs, Phys. Rev. E, 84, 3, (2011)
[76] Song, B., Barkley, D., Avila, M. & Hof, B.2016 Speed and structure of turbulent fronts in pipe flow. arXiv:1603.04077. · Zbl 1383.76192
[77] Starmer, C. F.; Biktashev, V. N.; Romashko, D. N.; Stepanov, M. R.; Makarova, O. N.; Krinsky, V. I., Vulnerability in an excitable medium: analytical and numerical studies of initiating unidirectional propagation, Biophys. J., 65, 5, 1775, (1993)
[78] Stuart, J. T., On the non-linear mechanics of hydrodynamic stability, J. Fluid Mech., 4, 1, 1-21, (1958) · Zbl 0081.41001
[79] Swinney, H. L. & Gollub, J. P.1985Hydrodynamic Instabilities and the Transition to Turbulence, 2nd edn. , vol. 45. Springer. doi:10.1007/3-540-13319-4 · Zbl 0651.76003
[80] Takeuchi, K. A.; Kuroda, M.; Chaté, H.; Sano, M., Directed percolation criticality in turbulent liquid crystals, Phys. Rev. Lett., 99, 23, (2007)
[81] Takeuchi, K. A.; Kuroda, M.; Chaté, H.; Sano, M., Experimental realization of directed percolation criticality in turbulent liquid crystals, Phys. Rev. E, 80, 5, (2009)
[82] Taylor, G. I., Stability of a viscous liquid contained between two rotating cylinders, Phil. Trans. R. Soc. Lond. A, 223, 289-343, (1923) · JFM 49.0607.01
[83] Tyson, J. J.; Keener, J. P., Singular perturbation-theory of traveling waves in excitable media, Physica D, 32, 3, 327-361, (1988) · Zbl 0656.76018
[84] Vollmer, J.; Schneider, T. M.; Eckhardt, B., Basin boundary, edge of chaos and edge state in a two-dimensional model, New J. Phys., 11, (2009)
[85] Waleffe, F., On a self-sustaining process in shear flows, Phys. Fluids, 9, 4, 883-900, (1997)
[86] Wedin, H.; Kerswell, R. R., Exact coherent structures in pipe flow: travelling wave solutions, J. Fluid Mech., 508, 333-371, (2004) · Zbl 1065.76072
[87] Willis, A. P.; Kerswell, R. R., Critical behavior in the relaminarization of localized turbulence in pipe flow, Phys. Rev. Lett., 98, 1, (2007)
[88] Winfree, A. T., Varieties of spiral wave behavior: an experimentalist’s approach to the theory of excitable media, Chaos: An Interdisciplinary J. Nonlinear Sci., 1, 3, 303-334, (1991) · Zbl 1031.76502
[89] Wygnanski, I.; Champagne, H., Transition in a pipe. Part 1. The origin of puffs and slugs and flow in a turbulent slug, J. Fluid Mech., 59, 281-335, (1973)
[90] Wygnanski, I.; Sokolov, M.; Friedman, D., Transition in a pipe. Part 2. The equilibrium puff, J. Fluid Mech., 69, 283-304, (1975)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.