Adaptive time stepping in elastoplasticity. (English) Zbl 1454.74138

Summary: Using rate-independent evolutions as a framework for elastoplasticity, an a posteriori bound for the error introduced by time stepping is established. A time adaptive algorithm is devised and tested in comparison to a method with constant time steps. Experiments show that a significant error reduction can be obtained using variable time steps.


74S05 Finite element methods applied to problems in solid mechanics
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
Full Text: DOI


[1] J. Alberty; C. Carstensen; S. A. Funken; R. Klose, Matlab implementation of the finite element method in elasticity, Computing, 69, 239-263 (2002) · Zbl 1239.74092
[2] J. Alberty; C. Carstensen; D. Zarrabi, Adaptive numerical analysis in primal elastoplasticity with hardening, Computer Methods in Applied Mechanics and Engineering, 171, 175-204 (1999) · Zbl 0956.74049
[3] S. Bartels, Quasi-optimal error estimates for implicit discretizations of rate-independent evolutions, SIAM Journal on Numerical Analysis, 52, 708-716 (2014) · Zbl 1457.65095
[4] S. Bartels, Numerical Methods for Nonlinear Partial Differential Equations, vol. 47 of Springer Series in Computational Mathematics, Springer, 2015 · Zbl 1314.65003
[5] L. Gallimard, P. Ladevèze and J. P. Pelle, Error estimation and adaptivity in elastoplasticity, International Journal for Numerical Methods in Engineering, 39 (1996), 189-217. · Zbl 0842.73065
[6] W. Han and B. Reddy, Plasticity: Mathematical Theory and Numerical Analysis, Interdisciplinary Applied Mathematics, Springer, 1999. · Zbl 0926.74001
[7] D. Knees, On global spatial regularity in elasto-plasticity with linear hardening, Calc. Var. Partial Differential Equations, 36, 611-625 (2009) · Zbl 1179.35086
[8] C. Kreuzer; C. A. Möller; A. Schmidt; K. G. Siebert, Design and convergence analysis for an adaptive discretization of the heat equation, IMA J. Numer. Anal., 32, 1375-1403 (2012) · Zbl 1261.65092
[9] A. Mielke, Evolution of rate-independent systems, Handbook of Differential Equations: Evolutionary Equations, II, 461-559 (2005) · Zbl 1120.47062
[10] A. Mielke and T. Roubíček, Rate-Independent Systems: Theory and Applications, vol. 193 of Applied Mathematical Sciences, Springer, 2015. · Zbl 1339.35006
[11] R. H. Nochetto; G. Savaré; C. Verdi, A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations, Communications on Pure and Applied Mathematics, 53, 525-589 (2000) · Zbl 1021.65047
[12] S. I. Repin and J. Valdman, Functional a posteriori error estimates for incremental models in elasto-plasticity, Cent. Eur. J. Math., 7 (2009), 506-519. · Zbl 1269.74202
[13] M. Sauter; C. Wieners, On the superlinear convergence in computational elasto-plasticity, Comput. Methods Appl. Mech. Engrg., 200, 3646-3658 (2011) · Zbl 1239.74014
[14] A. Schröder; S. Wiedemann, Error estimates in elastoplasticity using a mixed method, Appl. Numer. Math., 61, 1031-1045 (2011) · Zbl 1357.74013
[15] J. Simo and T. Hughes, Computational Inelasticity, Interdisciplinary Applied Mathematics, Springer, 1998.
[16] G. Starke, An adaptive least-squares mixed finite element method for elasto-plasticity, SIAM Journal on Numerical Analysis, 45 (2007), 371-388, URL http://www.jstor.org/stable/40232933. · Zbl 1131.74043
[17] U. Stefanelli, A variational principle for hardening elastoplasticity, SIAM J. Math. Anal., 40, 623-652 (2008) · Zbl 1170.35453
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.