×

Concurrent adaptive mass-conserving comminution of granular materials using rigid elements. (English) Zbl 1454.74033

Li, Xikui (ed.) et al., Proceedings of the 7th international conference on discrete element methods, DEM 7, Dalian, China, August 1–4, 2016. In 2 volumes. Singapore: Springer. Springer Proc. Phys. 188, 1143-1152 (2017).
Summary: The process of comminution, occurring during compaction and impact on granular media, affects dramatically the mechanical response of the materials. The adoption of rigid particles – common in DEM simulations – fails to reproduce accurately the grain fracture. The often-adopted solutions of replacing a broken particle with a cluster of either overlapping or non-overlapping spheres have the main drawback of inducing, respectively, repulsive spurious forces that badly affect the inter-particles contact or an undesirable loss of mass. This paper presents a novel method to overcome the issues of mass loss without imposing overlapping of the particles. When a failure condition is reached, the domain is decomposed using a Laguerre-Voronoi tessellation approach. A dense agglomerate of tangent, non-overlapping particles, generated with an efficient geometrical packing algorithm, fills the polyhedral cell containing the failed particle. Since the polyhedral cell is, by construction, bigger than the failed particle, the approach developed allows for a drastic – if not complete – reduction of the mass loss within a time efficient, concurrent simulation of the comminution process.
For the entire collection see [Zbl 1361.00015].

MSC:

74E20 Granularity
74S60 Stochastic and other probabilistic methods applied to problems in solid mechanics

Software:

TetGen
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Astrom, J.A., Hermann, H.J.: Fragmentation of grains in a two-dimensional packing. Eur. Phys. J. B 5, 551-554 (1998) · doi:10.1007/s100510050476
[2] Aurenhammer, F.: Power diagram—properties, algorithms and applications. SIAM J. Comput. 16, 78-96 (1987) · Zbl 0616.52007 · doi:10.1137/0216006
[3] Ben-Nun, O., Einav, I., Tordesillas, A.: Force attractor in confined comminution of granular materials. Phys. Rev. Lett. 104(10), 108001 (2010) · doi:10.1103/PhysRevLett.104.108001
[4] Bruchmuller, J., Van Wachem, B.G.M., Gua, S., Luo, K.H.: Modelling discrete fregmentation of brittle particles. Powder Technol. 208(3), 731-739 (2011) · doi:10.1016/j.powtec.2011.01.017
[5] Ciantia, M.O., Arroyo, M., Calvetti, F., Gens, A.: An approach to enhance efficiency of DEM modelling of soils with crushable grains. Geotechnique 65(2), 91-110 (2015) · doi:10.1680/geot.13.P.218
[6] Cundall, P.A.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47-65 (1979) · doi:10.1680/geot.1979.29.1.47
[7] De Cola, F., Falco, S., Barbieri, E., Petrinic, N.: New 3D geometrical deposition methods for efficient packing of spheres based on tangency. Int. J. Numer. Methods Eng. 104(12), 1085-1114 (2015) · Zbl 1352.74086 · doi:10.1002/nme.4955
[8] Hang, S.: TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Trans. Math. Softw. 41(2), 11 (2015) · Zbl 1369.65157
[9] Imai, H., Iri, M., Murota, K.: Voronoi diagram in the Laguerre geometry and its applications. SIAM J. Comput. 14(1), 93-105 (1985) · Zbl 0556.68038 · doi:10.1137/0214006
[10] Lobo-Guerrero, S., Vallejo, L.E., Vesga, L.F.: Visualization of crushing evolution in granular materials under compression using DEM. Int. J. Geomech. 6(3), 195-200 (2006) · doi:10.1061/(ASCE)1532-3641(2006)6:3(195)
[11] McDowell, G.R., De Bono, J.P.: On the micro mechanics of one dimensional normal compression. Geotechnique 63(11), 895-908 (2013) · doi:10.1680/geot.12.P.041
[12] O’Sullivan, C.: Particle-Based Discrete Element Modelling: A Geomechanics Perspective. Taylor and Francis, Hoboken, New York (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.