zbMATH — the first resource for mathematics

Effect of surface/interface stress on the plastic deformation of nanoporous materials and nanocomposites. (English) Zbl 1454.74008
Summary: Surface and interface play an important role on the overall mechanical behaviors of nanostructured materials. We investigate the effect of surface/interface stress on the macroscopic plastic behaviors of nanoporous materials and nanocomposites, where both the surface/interface residual stress and surface/interface elasticity are taken into account. A new second-order moment nonlinear micromechanics theory is developed and then reduced to macroscopically isotropic materials. It is found that the effect of surface/interface residual stress is much more prominent than that of the surface/interface elasticity, causing strong size effect as well as asymmetric plastic deformation for tension and compression. The variation of yield strength is more prominent with smaller pore/inclusion size or higher pore/inclusion volume fraction. For a representative nanoporous aluminum, the surface effect becomes significant when the pore radius is smaller than about 50 nm. When hard inclusions are embedded in a ductile metal matrix, the interface effect and resulting size effect are much smaller than that of nanoporous materials. The results may be useful for evaluating the mechanical integrity of nanostructured materials.

74A40 Random materials and composite materials
74A60 Micromechanical theories
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74C99 Plastic materials, materials of stress-rate and internal-variable type
Full Text: DOI
[1] Aifantis, K. E.; Willis, J. R.: The role of interfaces in enhancing the yield strength of composites and polycrystals, Journal of the mechanics and physics of solids 53, No. 5, 1047-1070 (2005) · Zbl 1120.74316 · doi:10.1016/j.jmps.2004.12.003
[2] Balazs, A. C.; Emrick, T.; Russell, T. P.: Nanoparticle polymer composites: where two small worlds meet, Science 314, No. 5802, 1107-1110 (2006)
[3] Balint, D. S.; Deshpande, V. S.; Needleman, A.; Van Der Giessen, E.: Discrete dislocation plasticity analysis of the grain size dependence of the flow strength of polycrystals, International journal of plasticity 24, No. 12, 2149-2172 (2008) · Zbl 1232.74015 · doi:10.1016/j.ijplas.2007.08.005
[4] Banhart, J.: Manufacture, characterisation and application of cellular metals and metal foams, Progress in materials science 46, 559-632 (2001)
[5] Cammarata, R. C.: Surface and interface stress effects in thin films, Progress in surface science 46, 1-38 (1994)
[6] Cao, G.; Chen, X.: An energy analysis of size-dependent elastic properties of zno nanofilms, Physical review B 76, 165407 (2007)
[7] Cao, G.; Chen, X.: The size dependence and orientation dependence of elastic properties of zno films, International journal of solids and structures 45, 1730-1753 (2008) · Zbl 1159.74378 · doi:10.1016/j.ijsolstr.2007.10.019
[8] Chen, T.; Dvorak, G. J.; Benveniste, Y.: Mori – tanaka estimates of the overall elastic moduli of certain composite materials, ASME journal applied mechanics 59, No. 3, 539-546 (1992) · Zbl 0766.73039 · doi:10.1115/1.2893757
[9] Chen, X.; Surani, F. B.; Kong, X.; Punyamurtula, V. K.; Qiao, Y.: Energy absorption performance of a steel tube enhanced by a nanoporous material functionalized liquid, Applied physics letters 89, 241918 (2006)
[10] Chen, H.; Liu, X. N.; Hu, G.: Overall plasticity of micropolar composites with interface effect, Mechanics of materials 40, No. 9, 721-728 (2008)
[11] Chen, X.; Cao, G.; Han, A.; Punyamurtula, V. K.; Liu, L.; Culligan, P. J.; Kim, T.; Qiao, Y.: Nanoscale fluid transport: size and rate effects, Nano letters 8, 2988-2992 (2008)
[12] Christensen, R. M.; Lo, K. H.: Solutions for effective shear properties in three phase sphere and cylinder models, Journal of the mechanics and physics of solids 27, 315-330 (1979) · Zbl 0419.73007 · doi:10.1016/0022-5096(79)90032-2
[13] Diao, J.; Gall, K.; Dunn, M. L.: Yield strength asymmetry in metal nanowires, Nano letters 4, 1863-1867 (2004)
[14] Dingreville, R.; Qu, J.; Cherkaoui, M.: Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films, Journal of the mechanics and physics of solids 53, No. 8, 1827-1854 (2005) · Zbl 1120.74683 · doi:10.1016/j.jmps.2005.02.012
[15] Duan, H. L.; Wang, J.; Huang, Z. P.; Karihaloo, B. L.: Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress, Journal of the mechanics and physics of solids 53, 1574-1596 (2005) · Zbl 1120.74718 · doi:10.1016/j.jmps.2005.02.009
[16] Frogley, M. D.; Ravich, D.; Wagner, H. D.: Mechanical properties of carbon nanoparticle-reinforced elastomers, Composites science and technology 63, 1647-1654 (2003)
[17] Gall, K.; Diao, J.; Dunn, M. L.: The strength of gold nanowires, Nano letters 4, 2431-2436 (2004) · Zbl 1115.74303
[18] Gan, Y. X.; Wei, C. -S.S.; Lam, M.; Wei, X.; Lee, D.; Kysar, J. W.; Chen, X.: Deformation and fracture behavior of electrocodeposited alumina nanoparticle/copper composite films, Journal of materials science 42, 5256-5263 (2007)
[19] Gleiter, H.: Nanostructured materials: basic concepts and microstructure, Acta materialia 48, 1-29 (2000)
[20] Gurtin, M. E.; Murdoch, A. I.: A continuum theory of elastic material surfaces, Archive for rational mechanics and analysis 57, 291-323 (1975) · Zbl 0326.73001 · doi:10.1007/BF00261375
[21] Hashin, Z.: Analysis of composites: a survey, ASME journal of applied mechanics 50, 481-505 (1983) · Zbl 0542.73092 · doi:10.1115/1.3167081
[22] Hashin, Z.; Shtrikman, S.: A variational approach to the theory of the elastic behaviour of multiphase materials, Journal of the mechanics and physics of solids 11, 127-140 (1963) · Zbl 0108.36902 · doi:10.1016/0022-5096(63)90060-7
[23] Hill, R.: A self-consistent mechanics of composite materials, Journal of the mechanics and physics of solids 13, No. 213-222 (1965)
[24] Hu, G. K.: A method of plasticity for general aligned spheroidal void or fiber reinforced composites, International journal of plasticity 12, 439-449 (1996) · Zbl 0884.73035 · doi:10.1016/S0749-6419(96)00015-0
[25] Huang, Z. P.; Wang, J.: A theory of hyperelasticity of multi-phase media with surface/interface energy effect, Acta mechanica 182, No. 3-4, 195-210 (2006) · Zbl 1121.74007 · doi:10.1007/s00707-005-0286-3
[26] Huang, Y.; Qu, S.; Hwang, K. C.; Li, M.; Gao, H.: A conventional theory of mechanism-based strain gradient plasticity, International journal of plasticity 20, No. 4-5, 753-782 (2004) · Zbl 1254.74019
[27] Kitazono, K.; Sato, E.; Kuribayashi, K.: Application of mean-field approximation to elastic-plastic behavior for closed-cell metal foams, Acta materialia 51, 4823-4836 (2003)
[28] Kornev, K. G.; Sroloviz, D. J.: Surface stress-driven instabilities of a free film, Applied physics letters 85, 2487 (2004)
[29] Lee, Z.; Ophus, C.; Fischer, L. M.; Nelson-Fitzpatrick, N.; Westra, K. L.; Evoy, S.; Radmilovic, V.; Dahmen, U.; Mitlin, D.: Metallic NEMS components fabricated from nanocomposite al – mo films, Nanotechnology 17, 3063-3070 (2006)
[30] Li, L. X.; Wang, T. J.: A unified approach to predict overall properties of composite materials, Materials characterization 54, 49-62 (2005)
[31] Liu, L.; Qiao, Y.; Chen, X.: Pressure-driven water infiltration into carbon nanotube: the effect of applied charges, Applied physics letters 92, 101927 (2008)
[32] Liu, L.; Chen, X.; Lu, W.; Qiao, Y.: Infiltration of electrolytes into molecular-sized nanopores, Physical review letters 102, 184501 (2009)
[33] Lloyd, D. J.: Particle-reinforced aluminum and magnesium matrix composites, International materials reviews 39, No. 1, 1-23 (1994)
[34] Lu, G. Q.; Zhao, X. S.: Nanoporous materials: science and engineering, Nanoporous materials: science and engineering 4 (2005)
[35] Marszalek, P. E.; Greenleaf, W. J.; Li, H.; Oberhauser, A. F.; Fernandez, J. M.: Atomic force microscopy captures quantized plastic deformation in gold nanowires, Proceedings of the national Academy of sciences of the united states of America 97, 6282 (2000)
[36] Miller, R. E.; Shenoy, V. B.: Size-dependent elastic properties of nanosized structural elements, Nanotechnology 11, 139 (2000)
[37] Morris, R. E.; Wheatley, P. S.: Gas storage in nanoporous materials, Angewandte chemie international edition 47, No. 27, 4966-4981 (2008)
[38] Moya, J. S.; Lopez-Estebana, S.; Pecharromán, C.: The challenge of ceramic/metal microcomposites and nanocomposites, Progress in materials science 52, 1017-1090 (2007)
[39] Needleman, A.; Van Der Giessen, E.: Discrete dislocation and continuum descriptions of plastic flow, Materials science and engineering A – structural materials properties microstructure and processing 309, 1-13 (2001) · Zbl 1004.74006
[40] Needleman, A.; Van Der Giessen, E.: Discrete dislocation and continuum descriptions of plastic flow, Materials science and engineering A, 1-13 (2001) · Zbl 1004.74006
[41] Nemat-Nasser, S.; Hori, M.: Micromechanics: overall properties of heterogeneous materials, (1993) · Zbl 0924.73006
[42] Nix, W. D.; Gao, H.: An atomistic interpretation of interface stress, Scripta materialia 39, No. 12, 1653-1661 (1998)
[43] Ou, Z. Y.; Wang, G. F.; Wang, T. J.: Effect of residual surface tension on the stress concentration around a nanosized spheroidal cavity, International journal of engineering science 46, No. 5, 475-485 (2008)
[44] Castañeda, P. Ponte: The effective mechanical properties of nonlinear isotropic composite, Journal of the mechanics and physics of solids 39, 45-71 (1991) · Zbl 0734.73052 · doi:10.1016/0022-5096(91)90030-R
[45] Castañeda, P. Ponte: Exact second-order estimates for the effective mechanical properties of nonlinear composite materials, Journal of the mechanics and physics of solids 44, No. 6, 827-862 (1996) · Zbl 1054.74708 · doi:10.1016/0022-5096(96)00015-4
[46] Castañeda, P. Ponte; Suquet, P.: Nonlinear composites, Advances in applied mechanics 34, 171-302 (1997) · Zbl 0889.73049
[47] Potirniche, G. P.; Horstemeyer, M. F.; Wagner, G. J.; Gullett, P. M.: A molecular dynamics study of void growth and coalescence in single crystal nickel, International journal of plasticity 22, No. 2, 257-278 (2006) · Zbl 02240061
[48] Qiao, Y.; Liu, L.; Chen, X.: Pressurized liquid in nanopores: a modified Laplace – Young equation, Nano letters 9, 984-988 (2009)
[49] Qiu, Y. P.; Weng, G. J.: A theory of plasticity for porous materials and particle-reinforced composites, ASME journal of applied mechanics 59, 261-268 (1992) · Zbl 0825.73037 · doi:10.1115/1.2899515
[50] Qiu, Y. P.; Weng, G. J.: Plastic potential and yield function of porous materials with aligned and randomly oriented spheroidal voids, International journal of plasticity 9, 271-290 (1993) · Zbl 0783.73023 · doi:10.1016/0749-6419(93)90038-R
[51] Qiu, Y. P.; Weng, G. J.: An energy approach to the plasticity of a two-phase composite containing aligned inclusions, ASME journal of applied mechanics 62, No. 4, 1039-1046 (1995) · Zbl 0865.73029 · doi:10.1115/1.2896040
[52] Russell, V. A.; Evans, C. C.; Li, W.; Ward, M. D.: Nanoporous molecular sandwiches: pillared two-dimensional hydrogen-bonded networks with adjustable porosity, Science 276, No. 5312, 575-579 (1997)
[53] Sharma, P.; Bhate, S. G. N.: Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities, Applied physics letters 82, 535 (2003)
[54] Shuttleworth, R.: The surface tension of solids, Proceedings of physical society of London A 63, 444-457 (1950)
[55] Suquet, P.: Overall potentials and extremal surfaces of power law or ideally plastic composites, Journal of the mechanics and physics of solids 41, 981-1002 (1993) · Zbl 0773.73063 · doi:10.1016/0022-5096(93)90051-G
[56] Suquet, P.: Overall properties of nonlinear composites: a modified secant moduli theory and its link with ponte castaneda’s nonlinear variational procedure, Comptes rendus de l’academie des sciences 3, No. 320, 563-571 (1995) · Zbl 0830.73046
[57] Tandon, G. P.; Weng, G. J.: A theory of particle reinforced plasticity, ASME journal of applied mechanics 55, 126-135 (1988)
[58] Teh, K. -S.; Cheng, Y. -T.; Lin, L.: MEMS fabrication based on nickel-nanocomposite: film deposition and characterization, Journal of micromechanics and microengineering 15, 2205-2215 (2005)
[59] Thostenson, E. T.; Ren, Z.; Chou, T. -W.: Advances in the science and technology of carbon nanotubes and their composites: a review, Composites science and technology 61, 1899-1912 (2001)
[60] Vermaak, J. S.; Mays, C. W.; Kuhlmann-Wilsdorf, D.: On surface stress and surface tension – I. Theoretical considerations, Surface science 12, No. 2, 128-133 (1968)
[61] Wang, G. F.; Feng, X. Q.: Effect of surface elasticity and residual surface tension on the natural frequency of microbeams, Applied physics letters 90, 231904 (2007)
[62] Wang, G. F.; Wang, T. J.: Deformation around a nanosized elliptical hole with surface effect, Applied physics letters 89, No. 16 (2006)
[63] Wang, G. F.; Wang, T. J.: Deformation around a nanosized elliptical hole with surface effect, Applied physics letters 89, 161901 (2006)
[64] Wang, G. F.; Feng, X. Q.; Wang, T. J.; Gao, W.: Surface effects on the near-tip stresses for mode-I and mode-III cracks, Journal of applied mechanics – transactions of the ASME 75, No. 1 (2008)
[65] Wu, B.; Heidelberg, A.; Boland, J. J.: Mechanical properties of ultrahigh-strength gold nanowires, Nature materials 4, 525-529 (2005)
[66] Xue, Z.; Huang, Y.; Li, M.: Particle size effect in metallic materials: a study by the theory of mechanism-based strain gradient plasticity, Acta materialia 50, No. 1, 149-160 (2001)
[67] Yang, F.: Effect of interfacial stresses on the elastic behavior of nanocomposite materials, Journal of applied physics 99, 054306 (2006)
[68] Yin, Y.: Integral theorems based on a new gradient operator derived from biomembranes (part II): applications, Tsinghua science and technology 10, No. 3, 376-380 (2005)
[69] Zhang, W.; Wang, T. J.: Effect of surface energy on the yield strength of nanoporous materials, Applied physics letters 90, 063104 (2007)
[70] Zhang, W.; Wang, T. J.; Chen, X.: Effect of surface stress on the asymmetric yield strength of nanowires, Journal of applied physics 103, 123527 (2008)
[71] Zhang, W.; Xu, Z.; Wang, T. J.; Chen, X.: Effect of inner gas pressure on the elastoplastic behavior of closed-cell metal foams: a second-order moment micromechanics model, International journal of plasticity 25, 1231-1252 (2009) · Zbl 1165.74018 · doi:10.1016/j.ijplas.2008.10.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.