×

Principal component analysis for functional data on Riemannian manifolds and spheres. (English) Zbl 1454.62553

Summary: Functional data analysis on nonlinear manifolds has drawn recent interest. Sphere-valued functional data, which are encountered, for example, as movement trajectories on the surface of the earth are an important special case. We consider an intrinsic principal component analysis for smooth Riemannian manifold-valued functional data and study its asymptotic properties. Riemannian functional principal component analysis (RFPCA) is carried out by first mapping the manifold-valued data through Riemannian logarithm maps to tangent spaces around the Fréchet mean function, and then performing a classical functional principal component analysis (FPCA) on the linear tangent spaces. Representations of the Riemannian manifold-valued functions and the eigenfunctions on the original manifold are then obtained with exponential maps. The tangent-space approximation yields upper bounds to residual variances if the Riemannian manifold has nonnegative curvature. We derive a central limit theorem for the mean function, as well as root-\(n\) uniform convergence rates for other model components. Our applications include a novel framework for the analysis of longitudinal compositional data, achieved by mapping longitudinal compositional data to trajectories on the sphere, illustrated with longitudinal fruit fly behavior patterns. RFPCA is shown to outperform an unrestricted FPCA in terms of trajectory recovery and prediction in applications and simulations.

MSC:

62R30 Statistics on manifolds
62G05 Nonparametric estimation
62G20 Asymptotic properties of nonparametric inference
62H25 Factor analysis and principal components; correspondence analysis
62R10 Functional data analysis

Software:

fda (R)
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] Adriaenssens, N., Coenen, S., Versporten, A., Muller, A., Minalu, G., Faes, C., Vankerckhoven, V., Aerts, M., Hens, N. and Molenberghs, G. (2011). European Surveillance of Antimicrobial Consumption (ESAC): Outpatient antibiotic use in Europe (1997–2009). J. Antimicrob. Chemother.66 vi3–vi12.
[2] Aitchison, J. (1986). The Statistical Analysis of Compositional Data. Chapman & Hall, London. · Zbl 0688.62004
[3] Anirudh, R., Turaga, P., Su, J. and Srivastava, A. (2015). Elastic functional coding of human actions: From vector-fields to latent variables. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 3147–3155.
[4] Anirudh, R., Turaga, P., Su, J. and Srivastava, A. (2017). Elastic functional coding of Riemannian trajectories. IEEE Trans. Pattern Anal. Mach. Intell.39 922–936.
[5] Bhattacharya, R. and Lin, L. (2017). Omnibus CLTs for Fréchet means and nonparametric inference on non-Euclidean spaces. Proc. Amer. Math. Soc.145 413–428. · Zbl 1353.60019 · doi:10.1090/proc/13216
[6] Bhattacharya, R. and Patrangenaru, V. (2003). Large sample theory of intrinsic and extrinsic sample means on manifolds.I. Ann. Statist.31 1–29. · Zbl 1020.62026 · doi:10.1214/aos/1046294456
[7] Bhattacharya, R. and Patrangenaru, V. (2005). Large sample theory of intrinsic and extrinsic sample means on manifolds.II. Ann. Statist.33 1225–1259. · Zbl 1072.62033 · doi:10.1214/009053605000000093
[8] Bosq, D. (2000). Linear Processes in Function Spaces: Theory and Applications. Lecture Notes in Statistics149. Springer, New York. · Zbl 0962.60004
[9] Carey, J. R., Papadopoulos, N. T., Kouloussis, N. A., Katsoyannos, B. I., Müller, H.-G., Wang, J.-L. and Tseng, Y.-K. (2006). Age-specific and lifetime behavior patterns in Drosophila melanogaster and the Mediterranean fruit fly, Ceratitis capitata. Exp. Gerontol.41 93–97.
[10] Castro, P. E., Lawton, W. H. and Sylvestre, E. A. (1986). Principal modes of variation for processes with continuous sample curves. Technometrics28 329–337. · Zbl 0615.62074 · doi:10.2307/1268982
[11] Chavel, I. (2006). Riemannian Geometry, 2nd ed. Cambridge Studies in Advanced Mathematics98. Cambridge Univ. Press, Cambridge. · Zbl 1099.53001
[12] Chen, D. and Müller, H.-G. (2012). Nonlinear manifold representations for functional data. Ann. Statist.40 1–29.
[13] Chiou, J.-M., Chen, Y.-T. and Yang, Y.-F. (2014). Multivariate functional principal component analysis: A normalization approach. Statist. Sinica24 1571–1596. · Zbl 1480.62115
[14] Cornea, E., Zhu, H., Kim, P. and Ibrahim, J. G. (2017). Regression models on Riemannian symmetric spaces. J. R. Stat. Soc. Ser. B. Stat. Methodol.79 463–482.
[15] Dai, X. and Müller, H.-G. (2018). Supplement to “Principal component analysis for functional data on Riemannian manifolds and spheres.” DOI:10.1214/17-AOS1660SUPP.
[16] Fisher, N. I., Lewis, T. and Embleton, B. J. J. (1987). Statistical Analysis of Spherical Data. Cambridge Univ. Press, Cambridge. · Zbl 0651.62045
[17] Fletcher, P. T., Lu, C., Pizer, S. M. and Joshi, S. (2004). Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Trans. Med. Imag.23 995–1005.
[18] Hsing, T. and Eubank, R. (2015). Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators. Wiley, Chichester. · Zbl 1338.62009
[19] Huckemann, S. F. and Eltzner, B. (2018). Backward nested descriptors asymptotics with inference on stem cell differentiation. Ann. Statist.46 1994–2019. · Zbl 1405.62070
[20] Huckemann, S., Hotz, T. and Munk, A. (2010). Intrinsic shape analysis: Geodesic PCA for Riemannian manifolds modulo isometric Lie group actions. Statist. Sinica20 1–58. · Zbl 1180.62087
[21] Jain, N. C. and Marcus, M. B. (1975). Central limit theorems for C(S)-valued random variables. J. Funct. Anal.19 216–231. · Zbl 0305.60004 · doi:10.1016/0022-1236(75)90056-7
[22] Jung, S., Dryden, I. L. and Marron, J. S. (2012). Analysis of principal nested spheres. Biometrika99 551–568. · Zbl 1437.62507 · doi:10.1093/biomet/ass022
[23] Jupp, P. E. and Kent, J. T. (1987). Fitting smooth paths to spherical data. J. Roy. Statist. Soc. Ser. C36 34–46. · Zbl 0613.62086
[24] Kendall, D. G., Barden, D., Carne, T. K. and Le, H. (2009). Shape and Shape Theory. Wiley, Hoboken. · Zbl 0940.60006
[25] Kent, J. T., Mardia, K. V., Morris, R. J. and Aykroyd, R. G. (2001). Functional models of growth for landmark data. In Proceedings in Functional and Spatial Data Analysis 109–115.
[26] Kneip, A. and Utikal, K. J. (2001). Inference for density families using functional principal component analysis. J. Amer. Statist. Assoc.96 519–542. · Zbl 1019.62060 · doi:10.1198/016214501753168235
[27] Lila, E., Aston, J. A. D. and Sangalli, L. M. (2016). Smooth principal component analysis over two-dimensional manifolds with an application to neuroimaging. Ann. Appl. Stat.10 1854–1879. · Zbl 1454.62187 · doi:10.1214/16-AOAS975
[28] Lin, Z. and Yao, F. (2017). Functional regression with unknown manifold structures. Available at arXiv:1704.03005.
[29] Lin, L., Thomas, B. S., Zhu, H. and Dunson, D. B. (2017). Extrinsic local regression on manifold-valued data. J. Amer. Statist. Assoc.112 1261–1273.
[30] Mardia, K. V. and Jupp, P. E. (2009). Directional Statistics. Wiley, Hoboken.
[31] Nadaraya, E. A. (1964). On estimating regression. Theory Probab. Appl.9 141–142.
[32] Patrangenaru, V. and Ellingson, L. (2015). Nonparametric Statistics on Manifolds and Their Applications to Object Data Analysis. CRC Press, Boca Raton, FL. · Zbl 1331.62007
[33] Petersen, A. and Müller, H.-G. (2016). Functional data analysis for density functions by transformation to a Hilbert space. Ann. Statist.44 183–218. · Zbl 1331.62203
[34] Petersen, A. and Müller, H. G. (2018). Fréchet regression for random objects. Ann. Statist. To appear. Available at arXiv:1608.03012.
[35] Qiu, Z., Song, X. K. and Tan, M. (2008). Simplex mixed-effects models for longitudinal proportional data. Scand. J. Stat.35 577–596. · Zbl 1197.62031 · doi:10.1111/j.1467-9469.2008.00603.x
[36] Rahman, I. U., Drori, I., Stodden, V. C., Donoho, D. L. and Schröder, P. (2005). Multiscale representations for manifold-valued data. Multiscale Model. Simul.4 1201–1232. · Zbl 1236.65166 · doi:10.1137/050622729
[37] Ramsay, J. O. and Silverman, B. W. (2005). Functional Data Analysis, 2nd ed. Springer, New York. · Zbl 1079.62006
[38] Su, J., Kurtek, S., Klassen, E. and Srivastava, A. (2014). Statistical analysis of trajectories on Riemannian manifolds: Bird migration, hurricane tracking and video surveillance. Ann. Appl. Stat.8 530–552. · Zbl 1454.62554 · doi:10.1214/13-AOAS701
[39] Telschow, F. J. E., Huckemann, S. F. and Pierrynowski, M. R. (2016). Functional inference on rotational curves and identification of human gait at the knee joint. Available at arXiv:1611.03665.
[40] Tournier, M., Wu, X., Courty, N., Arnaud, E. and Reveret, L. (2009). Motion compression using principal geodesics analysis. In Computer Graphics Forum28 355–364.
[41] van der Vaart, A. and Wellner, J. (1996). Weak Convergence and Empirical Processes: With Applications to Statistics. Springer, New York. · Zbl 0862.60002
[42] Wang, J.-L., Chiou, J.-M. and Müller, H.-G. (2016). Functional data analysis. Annu. Rev. Stat. Appl.3 257–295.
[43] Watson, G. S. (1964). Smooth regression analysis. Sankhyā Ser. A26 359–372. · Zbl 0137.13002
[44] Zheng, Y.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.