×

Finite-time control for interval type-2 fuzzy time-delay systems with norm-bounded uncertainties and limited communication capacity. (English) Zbl 1453.93217

Summary: This paper investigates the finite-time stabilization problem for interval type-2 T-S fuzzy systems with norm-bounded uncertainties and time-varying delays. A static output feedback controller is designed to guarantee the finite-time stability of closed-loop fuzzy control systems. Data packet loss is assumed to exist in the feedback transmission channel, and a novel delay product-type Lyapunov-Krasovskii function is constructed for deriving the delay-dependent stabilization conditions. These conditions can be denoted by linear matrix inequalities, according to matrix decoupling techniques and inequality constriction methods. The information of the upper and lower membership functions is integrated into the stabilization conditions using a membership function-dependent analysis method to reduce conservativeness. The simulation results demonstrate the effectiveness of the proposed finite-time control method.

MSC:

93D40 Finite-time stability
93C42 Fuzzy control/observation systems
93C43 Delay control/observation systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Amato, F.; Ariola, M.; Dorato, P., Finite-time control of linear systems subject to parametric uncertainties and disturbances, Automatica, 37, 9, 1459-1463 (2001) · Zbl 0983.93060
[2] Amador-Angulo, L.; Castillo, O., A new fuzzy bee colony optimization with dynamic adaptation of parameters using interval type-2 fuzzy logic for tuning fuzzy controllers, Soft Comput., 22, 2, 571-594 (2018)
[3] Castillo, O.; Amador-Angulo, L.; Castro, J. R., A comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems, Inform. Sci., 354, 257-274 (2016)
[4] Castillo, O.; Amador-Angulo, L., A generalized type-2 fuzzy logic approach for dynamic parameter adaptation in bee colony optimization applied to fuzzy controller design, Inform. Sci., 460-461, 476-496 (2018)
[5] Castillo, O.; Cervantes, L.; Soria, J., A generalized type-2 fuzzy granular approach with applications to aerospace, Inform. Sci., 354, 165-177 (2016)
[6] Castillo, O.; Melin, P., Intelligent systems with interval type-2 fuzzy logic, Int. J. Innov. Comput. Inform. Control, 4, 4, 771-783 (2008)
[7] Castillo, O.; Melin, P.; Pedrycz, W., Design of interval type-2 fuzzy models through optimal granularity allocation, Appl. Soft Comput., 11, 8, 5590-5601 (2011)
[8] Cazarez-Castro, N. R.; Aguilar, L. T.; Castillo, O., Designing type-1 and type-2 fuzzy logic controllers via fuzzy Lyapunov synthesis for nonsmooth mechanical systems, Eng. Appl. Artif. Intell., 25, 5, 971-979 (2012)
[9] Cervantes, L.; Castillo, O., Type-2 fuzzy logic aggregation of multiple fuzzy controllers for airplane flight control, Inform. Sci., 324, 247-256 (2015)
[10] Chang, X. H., Robust nonfragile filtering of fuzzy systems with linear fractional parametric uncertainties, IEEE Trans. Fuzzy Syst., 20, 6, 1001-1011 (2012)
[11] Chang, X. H., Robust output feedback H-infinity control and filtering for uncertain linear systems, Springer Sci. Bus. (2014)
[12] Gao, H. J.; Zhao, Y.; Chen, T. W., H∞ fuzzy control of nonlinear systems under unreliable communication links, IEEE Trans. Fuzzy Syst., 17, 2, 256-278 (2009)
[13] He, S.; Liu, F., Finite-time H∞ fuzzy control of nonlinear jump systems with time delays via dynamic observer-based state feedback, IEEE Trans. Fuzzy Syst., 20, 4, 605-614 (2012)
[14] Kwon, O. M.; Park, M. J.; Park, J. H.; Lee, S. M.; Cha, E. J., Stability and stabilization for discrete-time systems with time-varying delays via augmented Lyapunov-Krasovskii functional, J. Franklin Inst., 350, 3, 521-540 (2013) · Zbl 1269.93089
[15] Lam, H. K.; Leung, F. H.F., Stability Analysis of Fuzzy-Model-Based Control Systems, 191-215 (2011), Springer
[16] Lam, H. K.; Seneviratne, L. D., Stability analysis of interval type-2 fuzzy-model-based control systems, IEEE Trans. Syst. Man Cybern. Part B: Cybern., 38, 3, 617-628 (2008)
[17] Li, Y. M.; Liu, L.; Feng, G., Robust adaptive output feedback control to a class of non-triangular stochastic nonlinear systems, Automatica, 89, 325-332 (2018) · Zbl 1388.93033
[18] Li, H. Y.; Wang, J.; Lam, H. K., Adaptive sliding mode control for interval type-2 fuzzy systems, IEEE Trans. Syst. Man Cybern. Syst., 46, 12, 1654-1663 (2016)
[19] Li, Z.; Gao, H.; Agarwal, R. K., Stability analysis and controller synthesis for discrete-time delayed fuzzy systems via small gain theorem, Inform. Sci., 226, 93-104 (2013) · Zbl 1293.93481
[20] Li, H. Y.; Wu, C. W.; Shi, P.; Gao, Y. B., Control of nonlinear networked systems with packet dropouts: interval type-2 fuzzy model-based approach, IEEE Trans. Cybern., 45, 11, 2378-2389 (2015)
[21] Li, H. Y.; Wu, C. Q.; Wu, Li. G.; Lam, H. K.; Gao, Y. B., Filtering of interval type-2 fuzzy systems with intermittent measurements, IEEE Trans. Cybern., 46, 3, 668-678 (2015)
[22] Li, Y.; Liu, L.; Feng, G., Finite-Time Stabilization of a class of T-S fuzzy systems, IEEE Trans. Fuzzy Syst., 25, 6, 1824-1829 (2017)
[23] Mendel, J. M., Uncertain Rule-Based Fuzzy Systems: Introduction and New Directions, 529-554 (2017), Springer
[24] Mendel, J. M.; Hagras, H.; Tan, W. W., Introduction to Type-2 Fuzzy Logic Control: Theory and Applications, 251-285 (2014), John Wiley & Sons
[25] Ontiveros-Robles, E.; Melin, P.; Castillo, O., Comparative analysis of noise robustness of type-2 fuzzy logic controllers, Kybernetika, 54, 1, 175-201 (2018) · Zbl 1449.93163
[26] Park, P. G.; Kob, J. W.; Jeong, C., Reciprocally convex approach to stability of systems with time-varying delays, Automatica, 47, 1, 235-238 (2011) · Zbl 1209.93076
[27] Park, M. J.; Kwon, O. M., Stability and stabilization of discrete-time T-S fuzzy systems with time-varying delay via cauchy-schwartz-based summation inequality, IEEE Trans. Fuzzy Syst., 25, 1, 128-140 (2017)
[28] Qiu, J. B.; Feng, G.; Gao, H. J., Asynchronous output-feedback control of networked nonlinear systems with multiple packet dropouts: T-S fuzzy affine model-based approach, IEEE Trans. Fuzzy Syst., 19, 6, 1014-1030 (2011)
[29] Rong, N. N.; Wang, Z. S.; Zhang, H. G., Finite-time stabilization for discontinuous interconnected delayed systems via interval type-2 T-S fuzzy model approach, IEEE Trans. Fuzzy Syst. (2018)
[30] Sanchez, M. A.; Castillo, O.; Castro, J. R., Information granule formation via the concept of uncertainty-based information with Interval Type-2 Fuzzy Sets representation and Takagi-Sugeno-Kang consequents optimized with Cuckoo search, Appl. Soft Comput., 27, 602-609 (2015)
[31] Sanchez, M. A.; Castillo, O.; Castro, J. R., Generalized type-2 fuzzy systems for controlling a mobile robot and a performance comparison with interval type-2 and type-1 fuzzy systems, Expert Syst. Appl., 42, 14, 5904-5914 (2015)
[32] Shen, H.; Park, J. H.; Wu, Z. G., Finite-time reliable L2− L∞/H∞ control for Takagi-Sugeno fuzzy systems with actuator faults, IET Control Theory Appl., 8, 9, 688-696 (2014)
[33] Sheng, L.; Ma, X., Stability analysis and controller design of interval type-2 fuzzy systems with time delay, Int. J. Syst. Sci., 45, 5, 977-993 (2014) · Zbl 1284.93142
[34] Su, X.; Shi, P.; Wu, L., Fault detection filtering for nonlinear switched stochastic systems, IEEE Trans. Autom. Control, 61, 5, 1310-1315 (2016) · Zbl 1359.93497
[35] Takagi, T.; Sugeno, M., Fuzzy identification of systems and its applications to modeling and control, IEEE Trans. Syst. Man Cybern., 1, 116-132 (1985) · Zbl 0576.93021
[36] L.G. Wu, X.J. Su, P. Shi. Fuzzy control systems with time-delay and stochastic perturbation \([M\); L.G. Wu, X.J. Su, P. Shi. Fuzzy control systems with time-delay and stochastic perturbation \([M\)
[37] Xie, X.; Yue, D.; Park, J. H., Relaxed fuzzy observer design of discrete-time nonlinear systems via two effective technical measures, IEEE Trans. Fuzzy Syst. (2018)
[38] Yang, X. Z.; Wu, L. G.; Lam, H. K.; Su, X. J., Stability and stabilization of discrete-time T-S fuzzy systems with stochastic perturbation and time-varying delay, IEEE Trans. Fuzzy Syst., 22, 1, 124-138 (2014)
[39] Zadeh, L. A., The concept of a linguistic variable and its application to approximate reasoning—I, Inform. Sci., 8, 3, 199-249 (1975) · Zbl 0397.68071
[40] Zhang, C. K.; He, Y.; Jiang, L., Delay-variation-dependent stability of delayed discrete-time systems, IEEE Trans. Autom. Control, 61, 9, 2663-2669 (2016) · Zbl 1359.39009
[41] Zhang, Z.; Zhang, Z. X.; Zhang, H., Finite-time H∞ filtering for T-S fuzzy discrete-time systems with time-varying delay and norm-bounded uncertainties, IEEE Trans. Fuzzy Syst., 23, 6, 2427-2434 (2015)
[42] Zhao, T.; Dian, S. Y., Fuzzy dynamic output feedback H∞ control for continuous-time TS fuzzy systems under imperfect premise matching, ISA Trans., 70, 248-259 (2017)
[43] Zhao, T.; Xiao, J.; Han, L.; Qiu, C. Y.; Huang, J. C., Static output feedback control for interval type-2 T-S fuzzy systems based on fuzzy Lyapunov functions, Asian J. Control, 16, 6, 1702-1712 (2014) · Zbl 1307.93235
[44] Zhao, T.; Dian, S. Y., Fuzzy static output feedback H∞ control for nonlinear systems subject to parameter uncertainties, J. Syst. Sci. Complex., 31, 2, 343-371 (2018) · Zbl 1401.93131
[45] Zhao, T.; Liang, W. B.; Dian, S. Y.; Xiao, J.; Wei, Z. B., Improved stability and stabilisation criteria for discrete time-delay systems via a novel double summation inequality, IET Control Theory Appl., 12, 3, 327-337 (2018)
[46] Zhao, T.; Dian, S. Y., Delay-dependent stabilization of discrete-time interval type-2 T-S fuzzy systems with time-varying delay, J. Franklin Inst., 354, 3, 1542-1567 (2017) · Zbl 1355.93153
[47] Zhao, T.; Dian, S. Y., State feedback control for interval type-2 fuzzy systems with time-varying delay and unreliable communication links, IEEE Trans. Fuzzy Syst., 26, 2, 951-966 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.