×

A mathematical dissection of the adaptation of cell populations to fluctuating oxygen levels. (English) Zbl 1453.92093

Summary: The disordered network of blood vessels that arises from tumour angiogenesis results in variations in the delivery of oxygen into the tumour tissue. This brings about regions of chronic hypoxia (i.e., sustained low oxygen levels) and regions with alternating periods of low and relatively higher oxygen levels, and makes it necessary for cancer cells to adapt to fluctuating environmental conditions. We use a phenotype-structured model to dissect the evolutionary dynamics of cell populations exposed to fluctuating oxygen levels. In this model, the phenotypic state of every cell is described by a continuous variable that provides a simple representation of its metabolic phenotype, ranging from fully oxidative to fully glycolytic, and cells are grouped into two competing populations that undergo heritable, spontaneous phenotypic variations at different rates. Model simulations indicate that, depending on the rate at which oxygen is consumed by the cells, dynamic nonlinear interactions between cells and oxygen can stimulate chronic hypoxia and cycling hypoxia. Moreover, the model supports the idea that under chronic-hypoxic conditions lower rates of phenotypic variation lead to a competitive advantage, whereas higher rates of phenotypic variation can confer a competitive advantage under cycling-hypoxic conditions. In the latter case, the numerical results obtained show that bet-hedging evolutionary strategies, whereby cells switch between oxidative and glycolytic phenotypes, can spontaneously emerge. We explain how these results can shed light on the evolutionary process that may underpin the emergence of phenotypic heterogeneity in vascularised tumours.

MSC:

92C37 Cell biology
92C32 Pathology, pathophysiology
PDFBibTeX XMLCite
Full Text: DOI DOI

References:

[1] Acar, M.; Mettetal, JT; Van Oudenaarden, A., Stochastic switching as a survival strategy in fluctuating environments, Nat Genet, 40, 4, 471 (2008) · doi:10.1038/ng.110
[2] Amend, SR; Gatenby, RA; Pienta, KJ; Brown, JS, Cancer foraging ecology: diet choice, patch use, and habitat selection of cancer cells, Curr Pathobiol Rep, 6, 4, 209-218 (2018) · doi:10.1007/s40139-018-0185-7
[3] Ardaševa, A.; Gatenby, RA; Anderson, AR; Byrne, HM; Maini, PK; Lorenzi, T., Evolutionary dynamics of competing phenotype-structured populations in periodically fluctuating environments, J Math Biol, 80, 775-807 (2020) · Zbl 1434.35250 · doi:10.1007/s00285-019-01441-5
[4] Basanta, D.; Simon, M.; Hatzikirou, H.; Deutsch, A., Evolutionary game theory elucidates the role of glycolysis in glioma progression and invasion, Cell Prolif, 41, 6, 980-987 (2008) · doi:10.1111/j.1365-2184.2008.00563.x
[5] Baumann, MU; Zamudio, S.; Illsley, NP, Hypoxic upregulation of glucose transporters in bewo choriocarcinoma cells is mediated by hypoxia-inducible factor-1, Am J Physiol Cell Physiol, 293, 1, C477-C485 (2007) · doi:10.1152/ajpcell.00075.2007
[6] Beaumont, HJ; Gallie, J.; Kost, C.; Ferguson, GC; Rainey, PB, Experimental evolution of bet hedging, Nature, 462, 7269, 90 (2009) · doi:10.1038/nature08504
[7] Cairns, RA; Hill, RP, Acute hypoxia enhances spontaneous lymph node metastasis in an orthotopic murine model of human cervical carcinoma, Cancer Res, 64, 6, 2054-2061 (2004) · doi:10.1158/0008-5472.CAN-03-3196
[8] Cairns, RA; Kalliomaki, T.; Hill, RP, Acute (cyclic) hypoxia enhances spontaneous metastasis of KHT murine tumors, Cancer Res, 61, 24, 8903-8908 (2001)
[9] Carmeliet, P.; Jain, RK, Angiogenesis in cancer and other diseases, Nature, 407, 6801, 249-257 (2000) · doi:10.1038/35025220
[10] Carrere C, Nadin G (2019) Influence of mutations in phenotypically-structured populations in time periodic environment. Preprint
[11] Casciari, JJ; Sotirchos, SV; Sutherland, RM, Variations in tumor cell growth rates and metabolism with oxygen concentration, glucose concentration, and extracellular PH, J Cell Physiol, 151, 2, 386-394 (1992) · doi:10.1002/jcp.1041510220
[12] Champagnat, N.; Ferrière, R.; Ben Arous, G., The canonical equation of adaptive dynamics: a mathematical view, Selection, 2, 1-2, 73-83 (2002) · doi:10.1556/Select.2.2001.1-2.6
[13] Champagnat, N.; Ferrière, R.; Méléard, S., Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models, Theor Popul Biol, 69, 3, 297-321 (2006) · Zbl 1118.92039 · doi:10.1016/j.tpb.2005.10.004
[14] Chen, A.; Sceneay, J.; Gödde, N.; Kinwel, T.; Ham, S.; Thompson, EW; Humbert, PO; Möller, A., Intermittent hypoxia induces a metastatic phenotype in breast cancer, Oncogene, 37, 31, 4214-4225 (2018) · doi:10.1038/s41388-018-0259-3
[15] Chisholm, RH; Lorenzi, T.; Desvillettes, L.; Hughes, BD, Evolutionary dynamics of phenotype-structured populations: from individual-level mechanisms to population-level consequences, Zeitschrift für angewandte Mathematik und Physik, 67, 4, 1-34 (2016) · Zbl 1364.35380 · doi:10.1007/s00033-016-0690-7
[16] Dewhirst, MW, Relationships between cycling hypoxia, HIF-1, angiogenesis and oxidative stress, Radiat Res, 172, 6, 653-665 (2009) · doi:10.1667/RR1926.1
[17] Dong, G.; Lin, XH; Liu, HH; Gao, DM; Cui, JF; Ren, ZG; Chen, RX, Intermittent hypoxia alleviates increased VEGF and pro-angiogenic potential in liver cancer cells, Oncol Lett, 18, 2, 1831-1839 (2019)
[18] Gallaher, JA; Brown, JS; Anderson, AR, The impact of proliferation-migration tradeoffs on phenotypic evolution in cancer, Sci Rep, 9, 1, 2425 (2019) · doi:10.1038/s41598-019-39636-x
[19] Gillies, RJ; Brown, JS; Anderson, AR; Gatenby, RA, Eco-evolutionary causes and consequences of temporal changes in intratumoural blood flow, Nat Rev Cancer, 18, 576-585 (2018) · doi:10.1038/s41568-018-0030-7
[20] Gravenmier, CA; Siddique, M.; Gatenby, RA, Adaptation to stochastic temporal variations in intratumoral blood flow: the Warburg effect as a bet hedging strategy, Bull Math Biol, 80, 5, 954-970 (2018) · Zbl 1394.92031 · doi:10.1007/s11538-017-0261-x
[21] Hastings, A., Transients: the key to long-term ecological understanding?, Trends Ecol Evol, 19, 1, 39-45 (2004) · doi:10.1016/j.tree.2003.09.007
[22] Iglesias, SF; Mirrahimi, S., Long time evolutionary dynamics of phenotypically structured populations in time-periodic environments, SIAM J Math Anal, 50, 5, 5537-5568 (2018) · Zbl 1491.35272 · doi:10.1137/18M1175185
[23] Jain, RK, Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy, Nat Med, 7, 9, 987-989 (2001) · doi:10.1038/nm0901-987
[24] Jain, RK, Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy, Science, 307, 5706, 58-62 (2005) · doi:10.1126/science.1104819
[25] Kimura, H.; Braun, RD; Ong, ET; Hsu, R.; Secomb, TW; Papahadjopoulos, D.; Hong, K.; Dewhirst, MW, Fluctuations in red cell flux in tumor microvessels can lead to transient hypoxia and reoxygenation in tumor parenchyma, Cancer Res, 56, 23, 5522-5528 (1996)
[26] Kussell, E.; Leibler, S., Phenotypic diversity, population growth, and information in fluctuating environments, Science, 309, 5743, 2075-2078 (2005) · doi:10.1126/science.1114383
[27] LeVeque, RJ, Finite difference methods for ordinary and partial differential equations: steady-state and time-dependent problems (2007), Philadelphia: Society for Industrial and Applied Mathematics (SIAM), Philadelphia · Zbl 1127.65080
[28] Liou, GY; Storz, P., Reactive oxygen species in cancer, Free Radic Res, 44, 5, 479-496 (2010) · doi:10.3109/10715761003667554
[29] Liu, L.; Liu, W.; Wang, L.; Zhu, T.; Zhong, J.; Xie, N., Hypoxia-inducible factor 1 mediates intermittent hypoxia-induced migration of human breast cancer MDA-MB-231 cells, Oncol Lett, 14, 6, 7715-7722 (2017)
[30] Lorenzi, T.; Chisholm, RH; Desvillettes, L.; Hughes, BD, Dissecting the dynamics of epigenetic changes in phenotype-structured populations exposed to fluctuating environments, J Theor Biol, 386, 166-176 (2015) · Zbl 1343.92320 · doi:10.1016/j.jtbi.2015.08.031
[31] Lorenzi, T.; Venkataraman, C.; Lorz, A.; Chaplain, MA, The role of spatial variations of abiotic factors in mediating intratumour phenotypic heterogeneity, J Theor Biol, 451, 101-110 (2018) · Zbl 1397.92343 · doi:10.1016/j.jtbi.2018.05.002
[32] Lorz, A.; Lorenzi, T.; Clairambault, J.; Escargueil, A.; Perthame, B., Modeling the effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors, Bull Math Biol, 77, 1, 1-22 (2015) · Zbl 1334.92204 · doi:10.1007/s11538-014-0046-4
[33] Louie, E.; Nik, S.; Js, Chen; Schmidt, M.; Song, B.; Pacson, C.; Chen, XF; Park, S.; Ju, J.; Chen, EI, Identification of a stem-like cell population by exposing metastatic breast cancer cell lines to repetitive cycles of hypoxia and reoxygenation, Breast Cancer Res, 12, 6, R94 (2010) · doi:10.1186/bcr2773
[34] Macklin, P.; McDougall, S.; Anderson, AR; Chaplain, MA; Cristini, V.; Lowengrub, J., Multiscale modelling and nonlinear simulation of vascular tumour growth, J Math Biol, 58, 4-5, 765-798 (2009) · Zbl 1311.92040 · doi:10.1007/s00285-008-0216-9
[35] Matsumoto, S.; Yasui, H.; Mitchell, JB; Krishna, MC, Imaging cycling tumor hypoxia, Cancer Res, 70, 24, 10019-10023 (2010) · doi:10.1158/0008-5472.CAN-10-2821
[36] Michiels, C.; Tellier, C.; Feron, O., Cycling hypoxia: a key feature of the tumor microenvironment, Biochim Biophys Acta (BBA) Rev Cancer, 1866, 1, 76-86 (2016) · doi:10.1016/j.bbcan.2016.06.004
[37] Mirrahimi, S.; Perthame, B.; Souganidis, PE, Time fluctuations in a population model of adaptive dynamics, Annales de l’Institut Henri Poincaré (C) Non-linear Anal, 32, 1, 41-58 (2015) · Zbl 1312.35011 · doi:10.1016/j.anihpc.2013.10.001
[38] Nichol, D.; Robertson-Tessi, M.; Jeavons, P.; Anderson, AR, Stochasticity in the genotype-phenotype map: implications for the robustness and persistence of bet-hedging, Genetics, 204, 4, 1523-1539 (2016) · doi:10.1534/genetics.116.193474
[39] Otwinowski, J.; Plotkin, JB, Inferring fitness landscapes by regression produces biased estimates of epistasis, Proc Natl Acad Sci, 111, 22, E2301-E2309 (2014) · doi:10.1073/pnas.1400849111
[40] Philippi, T.; Seger, J., Hedging one’s evolutionary bets, revisited, Trends Ecol Evol, 4, 2, 41-44 (1989) · doi:10.1016/0169-5347(89)90138-9
[41] Rice, SH, Evolutionary theory: mathematical and conceptual foundations (2004), Sunderland: Sinauer Associates, Sunderland
[42] Ron, A.; Deán-Ben, XL; Gottschalk, S.; Razansky, D., Volumetric optoacoustic imaging unveils high-resolution patterns of acute and cyclic hypoxia in a murine model of breast cancer, Cancer Res, 79, 18, 4767-4775 (2019) · doi:10.1158/0008-5472.CAN-18-3769
[43] Saxena, K.; Jolly, MK, Acute vs. chronic vs. cyclic hypoxia: their differential dynamics, molecular mechanisms, and effects on tumor progression, Biomolecules, 9, 8, 339 (2019) · doi:10.3390/biom9080339
[44] Smits, WK; Kuipers, OP; Veening, JW, Phenotypic variation in bacteria: the role of feedback regulation, Nat Rev Microbiol, 4, 4, 259 (2006) · doi:10.1038/nrmicro1381
[45] Stace REA, Stiehl T, Chaplain MA, Marciniak-Czochra A, Lorenzi T (2019) Discrete and continuum phenotype-structured models for the evolution of cancer cell populations under chemotherapy. Math Model Nat Phenom. 10.1051/mmnp/2019027 · Zbl 1467.92101
[46] Veening, JW; Smits, WK; Kuipers, OP, Bistability, epigenetics, and bet-hedging in bacteria, Annu Rev Microbiol, 62, 193-210 (2008) · doi:10.1146/annurev.micro.62.081307.163002
[47] Verduzco, D.; Lloyd, M.; Xu, L.; Ibrahim-Hashim, A.; Balagurunathan, Y.; Gatenby, RA; Gillies, RJ, Intermittent hypoxia selects for genotypes and phenotypes that increase survival, invasion, and therapy resistance, PLoS ONE, 10, 3, e0120958 (2015) · doi:10.1371/journal.pone.0120958
[48] Villa C, Chaplain MA, Lorenzi T (2019) Modelling the emergence of phenotypic heterogeneity in vascularised tumours. Preprint
[49] Voorde, JV; Ackermann, T.; Pfetzer, N.; Sumpton, D.; Mackay, G.; Kalna, G.; Nixon, C.; Blyth, K.; Gottlieb, E.; Tardito, S., Improving the metabolic fidelity of cancer models with a physiological cell culture medium, Sci Adv, 5, 1, eaau7314 (2019) · doi:10.1126/sciadv.aau7314
[50] Welter M, Rieger H (2012) Blood vessel network remodeling during tumor growth. In: Modeling tumor vasculature. Springer, New York, NY, pp 335-360
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.