×

zbMATH — the first resource for mathematics

Power transformations in correspondence analysis. (English) Zbl 1453.62099
Summary: Power transformations of positive data tables, prior to applying the correspondence analysis algorithm, are shown to open up a family of methods with direct connections to the analysis of log-ratios. Two variations of this idea are illustrated. The first approach is simply to power transform the original data and perform a correspondence analysis – this method is shown to converge to unweighted log-ratio analysis as the power parameter tends to zero. The second approach is to apply the power transformation to the contingency ratios, that is, the values in the table relative to expected values based on the marginals – this method converges to weighted log-ratio analysis, or the spectral map. Two applications are described: first, a matrix of population genetic data which is inherently two-dimensional, and second, a larger cross-tabulation with higher dimensionality, from a linguistic analysis of several books.

MSC:
62-08 Computational methods for problems pertaining to statistics
62H25 Factor analysis and principal components; correspondence analysis
62H17 Contingency tables
62P10 Applications of statistics to biology and medical sciences; meta analysis
Software:
ca; R
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aitchison, J., Principal component analysis of compositional data, Biometrika, 70, 57-65, (1983) · Zbl 0515.62057
[2] Aitchison, J., The statistical analysis of compositional data, (1986), Chapman & Hall London, Reprinted in 2003 by Blackburn Press · Zbl 0688.62004
[3] Aitchison, J., Relative variation diagrams for describing patterns of compositional variability, Mathematical geology, 22, 487-511, (1990)
[4] Aitchison, J., Logratios and natural laws in compositional data analysis, Mathematical geology, 31, 563-580, (1999)
[5] Aitchison, J.; Greenacre, M.J., Biplots of compositional data, Applied statistics, 51, 375-392, (2002) · Zbl 1111.62300
[6] Atkinson, A.C., Plots, transformations and regression, (1985), Oxford University Press Oxford · Zbl 0582.62065
[7] Bartlett, M.S., The square root transformation in analysis of variance, Supplement to the journal of the royal statistical society, 3, 68-78, (1936) · JFM 63.1085.01
[8] Bavaud, F., Quotient dissimilarities, Euclidean embeddability, and huygens’ weak principle, (), 194-195 · Zbl 1033.62055
[9] Bavaud, F., Generalized factor analyses for contingency tables, (), 597-606
[10] Box, G.E.P.; Cox, D.R., An analysis of transformations (with discussion), Journal of royal statistical society, series B, 35, 473-479, (1964)
[11] Carroll, J.D.; Kumbasar, E.; Romney, A.K., An equivalence relation between correspondence analysis and classical metric multidimensional scaling for the recovery of Euclidean distances, British journal of mathematical and statistical psychology, 50, 81-92, (1997) · Zbl 0899.62074
[12] Cuadras, C.; Cuadras, D., A parametric approach to correspondence analysis, Linear algebra and its applications, 417, 64-74, (2006) · Zbl 1096.62061
[13] Cuadras, C.; Cuadras, D.; Greenacre, M.J., A comparison of methods for analyzing contingency tables, Communications in statistics — simulation and computation, 35, 447-459, (2006) · Zbl 1093.62061
[14] De Falguerolles, A.; Francis, B., Fitting power models to two-way contingency tables, (), 470-475
[15] Domenges, D.; Volle, M., Analyse factorielle sphérique: une exploration, Annales de l’INSEE, 35, 3-84, (1979)
[16] Escofier, B., Analyse factorielle et distances répondant au principe d’équivalence distributionnelle, Revue de statistique appliquée, 26, 29-37, (1978)
[17] Field, J.G.; Clarke, K.R.; Warwick, R.M., A practical strategy for analysing multispecies distribution patterns, Marine ecology progress series, 8, 37-52, (1982)
[18] Greenacre, M.J., Theory and applications of correspondence analysis, (1984), Academic Press New York · Zbl 0555.62005
[19] Greenacre, M.J., Correspondence analysis in practice, (2007), Chapman & Hall / CRC Press London, Published in Spanish translation in 2008 by the Fundación BBVA, Madrid · Zbl 1198.62061
[20] Greenacre, M.J., Lewi, P.J., 2005. Distributional equivalence and subcompositional coherence in the analysis of compositional data, contingency tables and ratio scale measurements. Economics Working Paper 908, Universitat Pompeu Fabra. URL: http://www.econ.upf.edu/en/research/onepaper.php?id=908. Revised version accepted for publication in Journal of Classification 2008 · Zbl 1276.62037
[21] Hinkley, D., On power transformations to symmetry, Biometrika, 62, 101-111, (1975) · Zbl 0308.62007
[22] Kazmierczak, J.-B., Analyse logarithmique: deux exemples d’application, Revue de statistique appliquée, 33, 13-24, (1985)
[23] Kroonenberg, P.M.; Lombardo, R., Nonsymmetric correspondence analysis: A tool for analysing contingency tables with a dependence structure, Multivariate behavioral research, 34, 367-396, (1999)
[24] Lauro, N.C.; D’Ambra, L., Non-symmetrical correspondence analysis, (), 433-446
[25] Lewi, P.J., Spectral mapping, a technique for classifying biological activity profiles of chemical compounds, Arzneimer forschung. (drug research.), 26, 1295-1300, (1976)
[26] Lewi, P.J., Analysis of contingency tables, (), 161-206, (Chapter 32)
[27] Nenadić, O.; Greenacre, M.J., Correspondence analysis in R, with two- and three-dimensional graphics: the ca package, Journal of statistical software, 20, 1, (2007), URL: http://www.jstatsoft.org/v20/i03/
[28] R Development Core Team 2007. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL: http://www.R-project.org
[29] Rao, C.R., A review of canonical coordinates and an alternative to correspondence analysis using Hellinger distance, Qüestiió, 19, 23-63, (1995) · Zbl 1167.62421
[30] Siciliano, R., Non-symmetrical logarithmic analysis for contingency tables, (), 278-285
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.