Optimal control of a population dynamics model with missing birth rate. (English) Zbl 1453.49004

The authors establish the existence of a localized distributed control for a model describing the dynamics of a population with age dependence and spatial structure, with an unknown birth rate. Having in view that the population is thought to represent an invasive species, of concern is bringing the distribution of individuals to a desired distribution, and this is done by acting only on a part of the domain.
The authors are then lead to solving the so-called no-regret control problem [J.-L. Lions, C. R. Acad. Sci., Paris, Sér. I 315, No. 12, 1253–1257 (1992; Zbl 0766.93033)]. They do so by establishing first several preliminary regularity and convergence results. By regularizing the no-regret control problem, they obtain a low-regret control problem and, by using the Legendre-Fenchel transform, prove that the latter is equivalent to a classical optimal control problem. They then introduce an appropriate Hilbert space and apply the Aubin-Lions lemma to obtain the convergence of a family of low-regret controls towards the no-regret control, finding also a singular optimality system that characterizes the no-regret control.


49J20 Existence theories for optimal control problems involving partial differential equations
49N30 Problems with incomplete information (optimization)
92D25 Population dynamics (general)
93C41 Control/observation systems with incomplete information


Zbl 0766.93033
Full Text: DOI


[1] J. -L. Lions, Contrôle à moindre regrets des systèmes distribués, C. R. Acad. Sci. Paris Sér. I Math., 315 (1992), pp. 1253-1257. · Zbl 0766.93033
[2] W. Rundel, Determining the birth function for an age structured population, Math. Population Stud., 1 (1989), pp. 377-395, 397. · Zbl 0900.92129
[3] B. Ainseba and M. Langlais, On a population dynamics control problem with age dependence and spatial structure, J. Math. Anal. Appl., 248 (2000), pp. 455-474. · Zbl 0964.93045
[4] B. Ainseba and S. Anita, Local exact controllability of the age-dependent population dynamics with diffusion, Abstr. Appl. Anal., 6 (2001), pp. 357-368. · Zbl 0995.93008
[5] A. Ouedraogo and O. Traoré, Optimal control for a nonlinear population dynamics problem, Port. Math. (N.S.), 62 (2005), pp.217-229. · Zbl 1082.92038
[6] M. Langlais, A nonlinear problem in age-dependent population diffusion, SIAM J. Math. Anal., 16 (1985), pp. 510-529, https://doi.org/10.1137/0516037. · Zbl 0589.92013
[7] G. F. Webb, Theory of Age Nonlinear Population Dynamics, Monogr. Textbooks Pure Appl. Math. 89, Marcel Dekker, New York, 1985. · Zbl 0555.92014
[8] M. G. Garroni and M. Langlais, Age-dependent population diffusion with external constraint, J. Math. Biol., 14 (1982), pp. 77-94. · Zbl 0506.92018
[9] \sc A. Ouédraogo and O. Traoré, Sur un problème non linéaire de dynamique des populations, IMHOTEP, 4 (2003), pp. 15-23. · Zbl 1286.92046
[10] \sc M. Langlais, Solutions fortes pour une classe de problèmes aux limites dégénérés, Comm. Partial Differential Equations, 4 (1979), pp. 869-897. · Zbl 0438.35032
[11] J. -L. Lions and J. -I Diaz, Environment, Economics and Their Mathematical Models, Masson, Paris, 1994. · Zbl 0827.00030
[12] O. Nakoulima, A. Omrane, and J. Velin, On the Pareto control and no-regret control for distributed systems with incomplete data, SIAM J. Control Optim., 42 (2003), pp. 1167-1184, https://doi.org/10.1137/S0363012900380188. · Zbl 1046.49015
[13] B. Jacob and A. Omrane, Optimal control for age-structured population dynamics of incomplete data, J. Math. Anal. Appl., 370 (2010), pp. 42-48. · Zbl 1191.92033
[14] O. Nakoulima, A. Omrane, and J. Velin, No-regret control for nonlinear distributed systems with incomplete data, J. Math. Pures Appl. (9), 81 (2002), pp. 1161-1189. g · Zbl 1057.49005
[15] J. Velin, No-regret distributed control of system governed by quasilinear elliptic equations with incomplete data: The degenerate case, J. Math. Pures Appl. (9), 83 (2004), pp. 503-539. · Zbl 1059.93060
[16] D. Azé, Éléments d’analyse convexe et variationnelle, Ellipses, Paris, 1997. · Zbl 0933.49001
[17] J. -L. Lions, Least regret control, virtual control and decomposition methods, M2AN Math. Model. Numer. Anal., 34 (2000), pp. 409-418. · Zbl 0951.65060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.