Optimization of Steklov-Neumann eigenvalues. (English) Zbl 1453.35056

Summary: This paper examines the Laplace equation with mixed boundary conditions, the Neumann and Steklov boundary conditions. This models a container with holes in it, like a pond filled with water but partly covered by immovable pieces on the surface. The main objective is to determine the right extent of the covering pieces, so that any shock inside the container yields a resonance. To this end, an algorithm is developed which uses asymptotic formulas concerning perturbations of the partitioning of the boundary pieces. Proofs for these formulas are established. Furthermore, this paper displays some results concerning bounds and examples with regards to the governing problem.


35J08 Green’s functions for elliptic equations
35B20 Perturbations in context of PDEs
35P05 General topics in linear spectral theory for PDEs
76B10 Jets and cavities, cavitation, free-streamline theory, water-entry problems, airfoil and hydrofoil theory, sloshing
65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
35A01 Existence problems for PDEs: global existence, local existence, non-existence
Full Text: DOI arXiv


[1] Abdullazade, N. N.; Chechkin, G. A., Perturbation of the Steklov problem on a small part of the boundary, J. Math. Sci. (N.Y.), 196, 4, 441-451 (2014), Problems in Mathematical Analysis, No. 74 (in Russian) · Zbl 1304.35456
[2] E. Akhmetgaliyev, O. Bruno, N. Nigam, N. Tazhembatov, A high-accuracy boundary integral strategy for the mixed Steklov-Neumann problem, 2019, in preparation.
[3] Akhmetgaliyev, E.; Kao, C.-Y.; Osting, B., Computational methods for extremal Steklov problems, SIAM J. Control Optim., 55, 2, 1226-1240 (2017) · Zbl 1432.65164
[4] Akhmetgaliyev, Eldar; Bruno, Oscar P.; Nigam, Nilima, A boundary integral algorithm for the Laplace Dirichlet-Neumann mixed eigenvalue problem, J. Comput. Phys., 298, 1-28 (2015) · Zbl 1349.65600
[5] Alhejaili, W.; Kao, C.-Y., Numerical studies of the Steklov eigenvalue problem via conformal mappings, Appl. Math. Comput., 347, 785-802 (2019) · Zbl 1428.35245
[6] Ammari, H.; Bruno, O.; Imeri, K.; Nigam, N., Wave enhancement through optimization of boundary conditions, SIAM J. Sci. Comput. (2019), in press
[7] Ammari, H.; Fitzpatrick, B.; Kang, H.; Ruiz, M.; Yu, S.; Zhang, H., Mathematical and Computational Methods in Photonics and Phononics, Mathematical Surveys and Monographs, vol. 235 (2018), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 1420.78001
[8] Ammari, H.; Imeri, K.; Wu, W., A mathematical framework for tunable metasurfaces. Part I, Asymptot. Anal., 114, 3-4, 129-179 (2019) · Zbl 1443.35153
[9] Ammari, H.; Imeri, K.; Wu, W., A mathematical framework for tunable metasurfaces. Part II, Asymptot. Anal., 114, 3-4, 181-209 (2019) · Zbl 1442.35443
[10] Ammari, H.; Kang, H.; Lee, H., Layer Potential Techniques in Spectral Analysis, Mathematical Surveys and Monographs, vol. 153 (2009), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 1167.47001
[11] Auchmuty, G., Steklov eigenproblems and the representation of solutions of elliptic boundary value problems, Numer. Funct. Anal. Optim., 25, 3-4, 321-348 (2004) · Zbl 1072.35133
[12] Chechkina, A. G., Estimate of the spectrum deviation of the singularly perturbed Steklov problem, Dokl. Math., 96, 2, 510-513 (Sep 2017)
[13] Dambrine, M.; Kateb, D.; Lamboley, J., An extremal eigenvalue problem for the Wentzell-Laplace operator, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 33, 2, 409-450 (2016) · Zbl 1347.35186
[14] Edward, Julian, An inverse spectral result for the Neumann operator on planar domains, J. Funct. Anal., 111, 2, 312-322 (1993) · Zbl 0813.47003
[15] Faltinsen, Odd M.; Timokha, Alexander N., Sloshing (2009), Cambridge University Press · Zbl 1250.76026
[16] Girouard, A.; Laugesen, R. S.; Siudeja, B. A., Steklov eigenvalues and quasiconformal maps of simply connected planar domains, Arch. Ration. Mech. Anal., 219, 2, 903-936 (2016) · Zbl 1333.35274
[17] Girouard, A.; Polterovich, I., On the Hersch-Payne-Schiffer estimates for the eigenvalues of the Steklov problem, Funkc. Anal. Prilozh., 44, 2, 33-47 (2010) · Zbl 1217.35125
[18] Girouard, A.; Polterovich, I., Shape optimization for low Neumann and Steklov eigenvalues, Math. Methods Appl. Sci., 33, 4, 501-516 (2010) · Zbl 1186.35121
[19] Girouard, A.; Polterovich, I., Spectral geometry of the Steklov problem (survey article), J. Spectr. Theory, 7, 2, 321-359 (2017) · Zbl 1378.58026
[20] Girouard, Alexandre; Parnovski, Leonid; Polterovich, Iosif; Sher, David A., The Steklov spectrum of surfaces: asymptotics and invariants, Math. Proc. Camb. Philos. Soc., 157, 3, 379-389 (2014) · Zbl 1317.58032
[21] Gryshchuk, S.; Lanza de Cristoforis, M., Simple eigenvalues for the Steklov problem in a domain with a small hole. A functional analytic approach, Math. Methods Appl. Sci., 37, 12, 1755-1771 (2014) · Zbl 1301.35065
[22] Kozlov, V.; Kuznetsov, N., The ice-fishing problem: the fundamental sloshing frequency versus geometry of holes, Math. Methods Appl. Sci., 27, 3, 289-312 (2004) · Zbl 1042.35038
[23] Kuznetsov, N.; Kulczycki, T.; Kwaśnicki, M.; Nazarov, A.; Poborchi, S.; Polterovich, I.; Siudeja, B., The legacy of Vladimir Andreevich Steklov, Not. Am. Math. Soc., 61, 1, 9-22 (2014) · Zbl 1322.01050
[24] Lamberti, P. D.; Provenzano, L., Neumann to Steklov eigenvalues: asymptotic and monotonicity results, Proc. R. Soc. Edinb., Sect. A, 147, 2, 429-447 (2017) · Zbl 1372.35193
[25] Levitin, M.; Parnovski, L.; Polterovich, I.; Sher, D. A., Sloshing, Steklov and corners: asymptotics of sloshing eigenvalues, preprint
[26] Mayer, H. C.; Krechetnikov, R., Walking with coffee: why does it spill?, Phys. Rev. E, 85, Article 046117 pp. (Apr 2012)
[27] McLean, W., Strongly Elliptic Systems and Boundary Integral Equations (2000), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0948.35001
[28] Nazarov, S. A., Asymptotic expansions of eigenvalues of the Steklov problem in singularly perturbed domains, Algebra Anal., 26, 2, 119-184 (2014)
[29] Stekloff, W., Sur les problèmes fondamentaux de la physique mathématique (suite et fin), Ann. Sci. Éc. Norm. Supér. (3), 19, 455-490 (1902)
[30] Viator, R.; Osting, B., Steklov eigenvalues of reflection-symmetric nearly circular planar domains, Proc. R. Soc. A, Math. Phys. Eng. Sci., 474, 2220, Article 20180072 pp. (2018) · Zbl 1425.35229
[31] Xia, C.; Wang, Q., Eigenvalues of the Wentzell-Laplace operator and of the fourth order Steklov problems, J. Differ. Equ., 264, 10, 6486-6506 (2018) · Zbl 1391.35302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.