×

Spatial patterns of mortality in the United States: a spatial filtering approach. (English) Zbl 1452.91243

Summary: Within the field of spatial analysis, filtering has emerged as a powerful modelling technique to retrieve systematic patterns of geographical variation. In this work, spatial filtering is introduced in the context of modelling mortality for the first time in actuarial literature. Specifically, the objective of this research is to identify patterns in the spatial distribution of mortality rates for the sixty-five and older age group at the county level for the contiguous United States. The analysis carried out pertains to the spatial autocorrelation of these rates over time. The spatial filtering methodology is applied to uncover latent spatial patterns. Furthermore, the analysis reveals the extent to which these spatial patterns remained consistent across the years in the study. Results show the existence of spatial dependencies leading to an accompanying spatial filter. Thus, incorporating spatial filters as an exploratory tool in spatial analysis proves of considerable use when it comes to enriching traditional mortality models.

MSC:

91D20 Mathematical geography and demography
91D25 Spatial models in sociology
91G05 Actuarial mathematics

Software:

spdep
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] de Beer, J.; Janssen, F., A new parametric model to assess delay and compression of mortality, Popul. Health Metr., 14, 1, 46 (2016)
[2] Beveridge, A., Relating economic and demographic change in the United States from 1970 to 2012: A preliminary examination using GIS and spatial analysis techniques with national data sources 1, (The Routledge Companion to Spatial History (2018), Routledge), 92-129
[3] Biffis, E., Affine processes for dynamic mortality and actuarial valuations, Insurance Math. Econom., 37, 3, 443-468 (2005) · Zbl 1129.91024
[4] Bivand, R.; Anselin, L.; Berke, O.; Bernat, A.; Carvalho, M.; Chun, Y.; Dormann, C.; Dray, S.; Halbersma, R.; Lewin-Koh, N., Spdep: Spatial dependence: weighting schemes, statistics and models (2011)
[5] Blackburn, C.; Sherris, M., Consistent dynamic affine mortality models for longevity risk applications, Insurance Math. Econom., 53, 1, 64-73 (2013) · Zbl 1284.91208
[6] Blake, D.; Cairns, A.; Dowd, K.; Other, A., Still living with mortality : the longevity risk transfer market after one decade, Br. Actuar. J. (2018)
[7] Booth, H.; Tickle, L., Mortality modelling and forecasting: A review of methods, Ann. Actuar. Sci., 3, 1-2, 3-43 (2008)
[8] Boots, B.; Tiefelsdorf, M., Global and local spatial autocorrelation in bounded regular tessellations, J. Geogr. Syst., 2, 4, 319-348 (2000)
[9] Boumezoued, A.; Hardy, H.; El Karoui, N.; Arnold, S., Cause-of-death mortality: What can be learned from population dynamics?, Insurance Math. Econom., 78, 301-315 (2018) · Zbl 1400.91242
[10] Cairns, A.; Blake, D.; Dowd, K., A two-factor model for stochastic mortality with parameter uncertainty: theory and calibration, J. Risk Insurance, 73, 4, 687-718 (2006)
[11] Chen, R.; Millossovich, P., Sex-specific mortality forecasting for UK countries: a coherent approach, Eur. Actuar. J., 1-27 (2018) · Zbl 1416.91163
[12] Chen, A.; Vigna, E., A unisex stochastic mortality model to comply with EU gender directive, Insurance Math. Econom., 73, 124-136 (2017) · Zbl 1416.91162
[13] Cox, S.; Lin, Y., Natural hedging of life and annuity mortality risks, N. Am. Actuar. J., 11, 3, 1-15 (2007)
[14] Danesi, I.; Haberman, S.; Millossovich, P., Forecasting mortality in subpopulations using lee-carter type models: a comparison, Insurance Math. Econom., 62, 151-161 (2015) · Zbl 1318.91109
[15] Deschênes, O.; Greenstone, M., Climate change, mortality, and adaptation: Evidence from annual fluctuations in weather in the US, Amer. Econ. J.: Appl. Econ., 3, 4, 152-185 (2011)
[16] Dubin, R., Spatial autocorrelation and neighborhood quality, Reg. Sci. Urban Econ., 22, 3, 433-452 (1992)
[17] Gatzert, N.; Wesker, H., The impact of natural hedging on a life insurer’s risk situation, J. Risk Finance, 13, 5, 396-423 (2012)
[18] Getis, A.; Griffith, D., Comparative spatial filtering in regression analysis, Geogr. Anal., 34, 2, 130-140 (2002)
[19] Gompertz, B., On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies., Philos. Trans. R. Soc. Lond., 115, 513-583 (1825)
[20] Griffith, D., Statistical and mathematical sources of regional science theory: Map pattern analysis as an example, Pap. Reg. Sci., 78, 1, 21-45 (1999)
[21] Griffith, D., Spatial Autocorrelation and Spatial Filtering: Gaining Understanding Through Theory and Scientific Visualization (2003), Springer-Verlag: Springer-Verlag Berlin
[22] Griffith, D.; Chun, Y., Spatial autocorrelation and spatial filtering, (Handbook of Regional Science (2014), Springer), 1477-1507
[23] Griffith, D. A.; Paelinck, J. H., Specifying a joint space-and time-lag using a bivariate Poisson distribution, J. Geogr. Syst., 11, 1, 23-36 (2009)
[24] Jeppson, N.; Ruddy, J.; Salerno, D., Defining and quantifying the pension liabilities of government entities in the united states, J. Corp. Account. Finance, 29, 1, 98-106 (2018)
[25] Jevtić, P.; Luciano, E.; Vigna, E., Mortality surface by means of continuous time cohort models, Insurance Math. Econom., 53, 1, 122-133 (2013) · Zbl 1284.91240
[26] Jevtić, P.; Regis, L., A continuous-time stochastic model for the mortality surface of multiple populations, Insurance Math. Econom., 88, 181-195 (2019) · Zbl 1425.91226
[27] Kalkstein, L. S.; Greene, J., An evaluation of climate/mortality relationships in large US cities and the possible impacts of a climate change., Environ. Health Perspect., 105, 1, 84 (1997)
[28] Kelejian, H. H.; Robinson, D. P., Spatial autocorrelation: A new computationally simple test with an application to per capita county police expenditures, Reg. Sci. Urban Econ., 22, 3, 317-331 (1992)
[29] Kisser, M.; Kiff, J.; Oppers, S.; Soto, M., The impact of longevity improvements on US corporate defined benefit pension plansIMF Working Paper WP/12/170 (2012)
[30] Le Gallo, J.; Páez, A., Using synthetic variables in instrumental variable estimation of spatial series models, Environ. Plan. A, 45, 9, 2227-2242 (2013)
[31] Lee, R.; Carter, L., Modeling and forecasting U.S. mortality, J. Amer. Statist. Assoc., 87, 419, 659-671 (1992) · Zbl 1351.62186
[32] Li, N.; Lee, R., Coherent mortality forecasts for a group of populations: An extension of the lee-carter method, Demography, 42, 3, 575-594 (2005)
[33] Li, H.; Lu, Y., Coherent forecasting of mortality rates: A sparse vector-autoregression approach, ASTIN Bull.: J. IAA, 47, 2, 563-600 (2017) · Zbl 1390.62215
[34] Li, H.; O’Hare, C.; Zhang, X., A semiparametric panel approach to mortality modeling, Insurance Math. Econom., 61, 264-270 (2015) · Zbl 1314.91141
[35] Lin, Y.; Cox, S., Securitization of mortality risks in life annuities, J. Risk Insurance, 72, 2, 227-252 (2005)
[36] Liu, Y.; Shen, J., Modelling skilled and less-skilled interregional migrations in China, 2000-2005, Popul. Space Place, 23, 4, 17 (2017)
[37] Luciano, E.; Regis, L.; Vigna, E., Single-and cross-generation natural hedging of longevity and financial risk, J. Risk Insurance, 84, 3, 961-986 (2017)
[38] Luciano, E.; Vigna, E., Mortality risk via affine stochastic intensities: calibration and empirical relevance, Belg. Actuar. Bull., 8, 1, 5-16 (2008) · Zbl 1398.91345
[39] Makeham, W., On the law of mortality and construction of annuity tables, J. Inst. Actuar., 8, 6, 301-310 (1860)
[40] McGeehin, M.; Mirabelli, M., The potential impacts of climate variability and change on temperature-related morbidity and mortality in the United States., Environ. Health Perspect., 109, S2, 185 (2001)
[41] Miller, H., Tobler’s first law and spatial analysis, Ann. Assoc. Amer. Geogr., 94, 2, 284-289 (2004)
[42] Moran, P., The interpretation of statistical maps, J. R. Stat. Soc., 10, 2, 243-251 (1948) · Zbl 0035.08304
[43] Centers for disease control and prevention, national center for health statistics. compressed mortality file 1968-2016. cdc wonder online database, compiled from compressed mortality file cmf 1968-2016, series 20, no. 2a (2017), accessed at http://wonder.cdc.gov/cmf-icd8.html
[44] Oppers, E.; Chikada, K.; Eich, F.; Imam, P.; Kiff, J.; Kisser, M.; Soto, M.; Sun, T., The financial impact of longevity risk, Global Financ. Stab. Rep.: Quest Lasting Stab., 1, 1-37 (2012)
[45] Ord, J. K., Spatial processes, Encyclopedia Stat. Sci., 12 (2004)
[46] O’Sullivan, D.; Unwin, D., Geographic information analysis (2014), John Wiley & Sons
[47] Paez, A., Using spatial filters and exploratory data analysis to enhance regression models of spatial data, Geogr. Anal. (2018)
[48] Paez, A.; Whalen, K., Enjoyment of commute: A comparison of different transportation modes, Transp. Res. a, 44, 7, 537-549 (2010)
[49] Pitacco, E., Guarantee structures in life annuities: A comparative analysis, Geneva Pap. Risk Insurance-Issues Pract., 41, 1, 78-97 (2016)
[50] Pitacco, E.; Denuit, M.; Haberman, S.; Olivieri, A., Modelling longevity dynamics for pensions and annuity business (2009), Oxford University Press · Zbl 1163.91005
[51] Pollard, J.; Parr, N., Keeping abreast of mortality changeActuarial and Demography Research Paper Series No 002/98 (1998), Citeseer
[52] Real, R., Tables of significant values of jaccard’s index of similarity, Misc. Zool., 22, 1, 29-40 (1999)
[53] Real, R.; Vargas, J., The probabilistic basis of jaccard’s index of similarity, Syst. Biol., 45, 3, 380-385 (1996)
[54] Renshaw, A.; Haberman, S., Lee-carter mortality forecasting with age-specific enhancement, Insurance Math. Econom., 33, 2, 255-272 (2003) · Zbl 1103.91371
[55] Rutten, L. J.F.; Augustson, E. M.; Moser, R. P.; Beckjord, E. B.; Hesse, B. W., Smoking knowledge and behavior in the United States: sociodemographic, smoking status, and geographic patterns, Nicotine Tob. Res., 10, 10, 1559-1570 (2008)
[56] Saberton, P.; Paez, A.; Newbold, K.; Heddle, N., Geographical variations in the correlates of blood donor turnout rates: an investigation of canadian metropolitan areas, Int. J. Health Geogr., 8 (2009)
[57] Sui, D., Tobler’s first law of geography: A big idea for a small world?, Ann. Assoc. Amer. Geogr., 94, 2, 269-277 (2004)
[58] Tiefelsdorf, M.; Boots, B., The exact distribution of moran’s i, Environ. Plan. A, 27, 6, 985-999 (1995)
[59] Tobler, W., Cellular geography, (Philosophy in Geography (1979), Springer), 379-386
[60] Tobler, W., On the first law of geography: A reply, Ann. Assoc. Amer. Geogr., 94, 2, 304-310 (2004)
[61] Vega, S.; Elhorst, J., A regional unemployment model simultaneously accounting for serial dynamics, spatial dependence and common factors, Reg. Sci. Urban Econ., 60, 85-95 (2016)
[62] Villegas, A.; Haberman, S., On the modeling and forecasting of socioeconomic mortality differentials: An application to deprivation and mortality in England, N. Am. Actuar. J., 18, 1, 168-193 (2014) · Zbl 1412.91057
[63] Wang, Y.; Kockelman, K.; Wang, X., Understanding spatial filtering for analysis of land use-transport data, J. Transp. Geogr., 31, 123-131 (2013)
[64] Wasserman, G. A.; Liu, X.; LoIacono, N. J.; Kline, J.; Factor-Litvak, P.; van Geen, A.; Mey, J. L.; Levy, D.; Abramson, R.; Schwartz, A., A cross-sectional study of well water arsenic and child IQ in Maine schoolchildren, Environ. Health, 13, 1, 23 (2014)
[65] Yang, T.; Matthews, S., Death by segregation: Does the dimension of racial segregation matter?, Plos One, 10, 9, 26 (2015)
[66] Zhang, J.; Li, B.; Chen, Y.; Chen, M.; Fang, T.; Liu, Y., Eigenvector spatial filtering regression modeling of ground pm2.5 concentrations using remotely sensed data, Int. J. Environ. Res. Public Health, 15, 6, 24 (2018)
[67] Zhu, N.; Bauer, D., A cautionary note on natural hedging of longevity risk, N. Am. Actuar. J., 18, 1, 104-115 (2014) · Zbl 1412.91061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.