zbMATH — the first resource for mathematics

Cost-sensitive three-way class-specific attribute reduction. (English) Zbl 1452.68219
Summary: The theory of rough sets provides a method to construct three types of classification rules, leading to three-way decisions. From such a point of view, we introduce the concept of cost-sensitive three-way class-specific attribute reducts. Based on the semantics of the three-way decisions, we introduce a monotonic result cost in decision-theoretic rough set model, called the result cost of three-way decisions. We provide a critical analysis of classification-based attribute reducts from result-cost-sensitive and test-cost-sensitive perspectives. On this basis, we propose class-specific cost-sensitive attribute reduction approaches. More specifically, we define a class-specific minimum cost reduct. The objective of attribute reduction is to minimize result cost and test cost with respect to a particular decision class. We design two algorithms for constructing a family of class-specific minimum cost reducts based on addition-deletion strategy and deletion strategy, respectively. The experimental results indicate that the result cost of three-way decisions is monotonic with respect to the set inclusion of attributes and the class-specific minimum cost reducts can make a better trade-off between misclassification cost and test cost with respect to a particular decision class.

68T37 Reasoning under uncertainty in the context of artificial intelligence
Full Text: DOI
[1] Baggenstoss, P. M., Class-specific feature sets in classification, IEEE Trans. Signal Process., 47, 12, 3428-3432, (1999) · Zbl 1064.62534
[2] Chen, D. G.; Zhao, S. Y., Local reduction of decision system with fuzzy rough sets, Fuzzy Sets Syst., 161, 13, 1871-1883, (2010) · Zbl 1192.68683
[3] Elkan, C., The foundations of cost-sensitive learning, (International Joint Conference on Artificial Intelligence, vol. 17, (2001), Lawrence Erlbaum Associates Ltd), 973-978
[4] Greco, S.; Matarazzo, B.; Slowinski, R., Parameterized rough set model using rough membership and bayesian confirmation measures, Int. J. Approx. Reason., 49, 2, 285-300, (2008) · Zbl 1191.68678
[5] Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I. H., The weka data mining software: an update, ACM SIGKDD Explor. Newsl., 11, 1, 10-18, (2009)
[6] Hu, Q. H.; Xie, Z. X.; Yu, D. R., Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation, Pattern Recognit., 40, 12, 3509-3521, (2007) · Zbl 1129.68073
[7] Huang, J. J.; Wang, J.; Yao, Y. Y.; Zhong, N., Cost-sensitive three-way recommendations by learning pair-wise preferences, Int. J. Approx. Reason., 86, 28-40, (2017) · Zbl 1419.68209
[8] Jia, X. Y.; Liao, W. H.; Tang, Z. M.; Shang, L., Minimum cost attribute reduction in decision-theoretic rough set models, Inf. Sci., 219, 4, 151-167, (2013) · Zbl 1293.91049
[9] Jing, Y. G.; Li, T. R.; Huang, J. F.; Zhang, Y. Y., An incremental attribute reduction approach based on knowledge granularity under the attribute generalization, Int. J. Approx. Reason., 76, 80-95, (2016) · Zbl 1385.68047
[10] Ju, H. R.; Yang, X. B.; Yu, H. L.; Li, T. J.; Yu, D. J.; Yang, J. Y., Cost-sensitive rough set approach, Inf. Sci., 355, 282-298, (2016)
[11] Li, H. X.; Zhang, L. B.; Zhou, X. Z.; Huang, B., Cost-sensitive sequential three-way decision modeling using a deep neural network, Int. J. Approx. Reason., 85, 68-78, (2017) · Zbl 1419.68078
[12] Li, H. X.; Zhou, X. Z.; Huang, B.; Liu, D., Cost-sensitive three-way decision: a sequential strategy, (Proceedings of RSKT 2013. Proceedings of RSKT 2013, LNAI, vol. 8171, (2013)), 325-337
[13] Li, J. H.; Kumar, C. A.; Mei, C. L.; Wang, X. Z., Comparison of reduction in formal decision contexts, Int. J. Approx. Reason., 80, 100-122, (2017) · Zbl 1400.68208
[14] Li, W. W.; Huang, Z. Q.; Li, Q., Three-way decisions based software defect prediction, Knowl.-Based Syst., 91, 263-274, (2016)
[15] Liang, D. C.; Pedrycz, W.; Liu, D.; Hu, P., Three-way decisions based on decision-theoretic rough sets under linguistic assessment with the aid of group decision making, Appl. Soft Comput., 29, 256-269, (2015)
[16] Liu, D.; Li, T. R.; Li, H. X., A multiple-category classification approach with decision-theoretic rough sets, Fundam. Inform., 115, 2, 173-188, (2012) · Zbl 1248.68492
[17] Liu, D.; Li, T. R.; Ruan, D., Probabilistic model criteria with decision-theoretic rough sets, Inf. Sci., 181, 17, 173-178, (2011)
[18] Liu, G. L.; Hua, Z.; Zou, J. Y., Local attribute reductions for decision tables, Inf. Sci., 422, 204-217, (2018)
[19] Ma, X. A.; Wang, G. Y.; Yu, H.; Li, T. R., Decision region distribution preservation reduction in decision-theoretic rough set model, Inf. Sci., 278, 614-640, (2014) · Zbl 1354.68264
[20] Ma, X.-A.; Yao, Y. Y., Three-way decision perspectives on class-specific attribute reducts, Inf. Sci., 450, 227-245, (2018)
[21] Miao, D. Q.; Zhao, Y.; Li, H. X.; Xu, F. F., Relative reducts in consistent and inconsistent decision tables of the Pawlak rough set model, Inf. Sci., 179, 24, 4140-4150, (2009) · Zbl 1183.68608
[22] Min, F.; He, H. P.; Qian, Y. H.; Zhu, W., Test-cost-sensitive attribute reduction, Inf. Sci., 181, 22, 4928-4942, (2011)
[23] Min, F.; Hu, Q. H.; Zhu, W., Feature selection with test cost constraint, Int. J. Approx. Reason., 55, 1, 167-179, (2014) · Zbl 1316.68117
[24] Min, F.; Liu, Q. H., A hierarchical model for test-cost-sensitive decision systems, Inf. Sci., 179, 14, 2442-2452, (2009) · Zbl 1192.68651
[25] Parthalain, N. M.; Shen, Q.; Jensen, R., A distance measure approach to exploring the rough set boundary region for attribute reduction, IEEE Trans. Knowl. Data Eng., 22, 3, 305-317, (2010)
[26] Pawlak, Z., Rough sets, Int. J. Comput. Inf. Sci., 11, 5, 341-356, (1982) · Zbl 0501.68053
[27] Pawlak, Z., Rough Sets: Theoretical Aspects of Reasoning about Data, (1991), Kluwer Academic Publishers: Kluwer Academic Publishers Boston · Zbl 0758.68054
[28] Pawlak, Z.; Skowron, A., Rudiments of rough sets, Inf. Sci., 177, 1, 3-27, (2007) · Zbl 1142.68549
[29] Pedrycz, W., Granular Computing: Analysis and Design of Intelligent Systems, (2013), CRC Press/Francis Taylor: CRC Press/Francis Taylor Boca Raton
[30] Peters, J. F.; Ramanna, S., Proximal three-way decisions: theory and applications in social networks, Knowl.-Based Syst., 91, 4-15, (2016)
[31] Qian, J.; Dang, C. Y.; Yue, X. D.; Zhang, N., Attribute reduction for sequential three-way decisions under dynamic granulation, Int. J. Approx. Reason., 85, 196-216, (2017) · Zbl 1419.68175
[32] Qian, Y. H.; Zhang, H.; Sang, Y. L.; Liang, J. Y., Multigranulation decision-theoretic rough sets, Int. J. Approx. Reason., 55, 1, 225-237, (2014) · Zbl 1316.68190
[33] Savchenko, A. V., Fast multi-class recognition of piecewise regular objects based on sequential three-way decisions and granular computing, Knowl.-Based Syst., 91, 252-262, (2016)
[34] Ślęzak, D.; Ziarko, W., The investigation of the bayesian rough set model, Int. J. Approx. Reason., 40, 1, 81-89, (2005) · Zbl 1099.68089
[35] Song, J. J.; Tsang, E. C.; Chen, D. G.; Yang, X. B., Minimal decision cost reduct in fuzzy decision-theoretic rough set model, Knowl.-Based Syst., 126, 104-112, (2017)
[36] Stepaniuk, J., Approximation spaces, reducts and representatives, (Rough Sets in Knowledge Discovery 2, (1998), Springer), 109-126 · Zbl 0943.68158
[37] Thangavela, K.; Pethalakshmi, A., Dimensionality reduction based on rough set theory: a review, Appl. Soft Comput., 9, 1, 1-12, (2009)
[38] Turney, P. D., Types of cost in inductive concept learning, (2002), preprint
[39] Wang, G. Y.; Ma, X. A.; Yu, H., Monotonic uncertainty measures for attribute reduction in probabilistic rough set model, Int. J. Approx. Reason., 59, 41-67, (2015) · Zbl 1328.68231
[40] Xie, X. J.; Qin, X. L., A novel incremental attribute reduction approach for dynamic incomplete decision systems, Int. J. Approx. Reason., 93, 443-462, (2018)
[41] Yang, X.; Li, T. R.; Fujita, H.; Liu, D., A sequential three-way approach to multi-class decision, Int. J. Approx. Reason., 104, 108-125, (2019)
[42] Yang, X.; Li, T. R.; Liu, D.; Chen, H. M.; Luo, C., A unified framework of dynamic three-way probabilistic rough sets, Inf. Sci., 420, 126-147, (2017)
[43] Yang, X. B.; Qi, Y. S.; Song, X. N.; Yang, J. Y., Test cost sensitive multigranulation rough set: model and minimal cost selection, Inf. Sci., 250, 184-199, (2013) · Zbl 1320.68197
[44] Yao, J. T.; Vasilakos, A. V.; Pedrycz, W., Granular computing: perspectives and challenges, IEEE Trans. Cybern., 43, 6, 1977-1989, (2013)
[45] Yao, Y. Y., Three-way decisions with probabilistic rough sets, Inf. Sci., 180, 3, 341-353, (2010)
[46] Yao, Y. Y., Granular computing and sequential three-way decisions, (Proceedings of RSKT 2013. Proceedings of RSKT 2013, LNAI, vol. 8171, (2013)), 16-27
[47] Yao, Y. Y., The two sides of the theory of rough sets, Knowl.-Based Syst., 80, 67-77, (2015)
[48] Yao, Y. Y., Three-way decisions and cognitive computing, Cogn. Comput., 8, 4, 543-554, (2016)
[49] Yao, Y. Y., Three-way decision and granular computing, Int. J. Approx. Reason., 103, 107-123, (2018)
[50] Yao, Y. Y.; Wong, S. K.M., A decision theoretic framework for approximating concepts, Int. J. Man-Mach. Stud., 37, 6, 793-809, (1992)
[51] Yao, Y. Y.; Zhang, X. Y., Class-specific attribute reducts in rough set theory, Inf. Sci., 418, 601-618, (2017)
[52] Yao, Y. Y.; Zhao, Y., Attribute reduction in decision-theoretic rough set model, Inf. Sci., 178, 17, 3356-3373, (2008) · Zbl 1156.68589
[53] Yao, Y. Y.; Zhao, Y.; Wang, J., On reduct construction algorithms, (Transactions on Computational Science II, vol. 5150, (2008)), 100-117 · Zbl 1154.68513
[54] Yu, H.; Jiao, P.; Yao, Y. Y.; Wang, G. Y., Detecting and refining overlapping regions in complex networks with three-way decisions, Inf. Sci., 373, 21-41, (2016)
[55] Yu, H.; Zhang, C.; Wang, G. Y., A tree-based incremental overlapping clustering method using the three-way decision theory, Knowl.-Based Syst., 91, 189-203, (2016)
[56] Zhang, H. R.; Min, F., Three-way recommender systems based on random forests, Knowl.-Based Syst., 91, 275-286, (2016)
[57] Zhang, Q. H.; Xia, D. Y.; Wang, G. Y., Three-way decision model with two types of classification errors, Inf. Sci., 420, 431-453, (2017)
[58] Zhang, X. Y.; Miao, D. Q., Three-way attribute reducts, Int. J. Approx. Reason., 88, 401-434, (2017) · Zbl 1418.68217
[59] Zhao, X. R.; Hu, B. Q., Fuzzy and interval-valued fuzzy decision-theoretic rough set approaches based on fuzzy probability measure, Inf. Sci., 298, 534-554, (2015) · Zbl 1360.68856
[60] Zhao, X. R.; Hu, B. Q., Fuzzy probabilistic rough sets and their corresponding three-way decisions, Knowl.-Based Syst., 91, 126-142, (2016)
[61] Zhao, X. R.; Hu, B. Q., Three-way decisions with decision-theoretic rough sets in multiset-valued information tables, Inf. Sci., (2018)
[62] Zhou, B., Multi-class decision-theoretic rough sets, Int. J. Approx. Reason., 55, 1, 211-224, (2014) · Zbl 1316.68203
[63] Ziarko, W., Probabilistic approach to rough sets, Int. J. Approx. Reason., 49, 2, 272-284, (2008) · Zbl 1191.68705
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.