×

Some classes of abstract simplicial complexes motivated by module theory. (English) Zbl 1452.13027

Authors’ abstract: In this paper we analyze some classes of abstract simplicial complexes relying on algebraic models arising from module theory. To this regard, we consider a leftmodule on a unitary ring and find models of abstract complexes and related set operators having specific regularity properties, which are strictly interrelated to the algebraic properties of both the module and the ring. Next, taking inspiration from the aforementioned models, we carry out our analysis from modules to arbitrary sets. In such a more general perspective, we start with an abstract simplicial complex and an associated set operator. Endowing such a set operator with the corresponding properties obtained in our module instances, we investigate in detail and prove several properties of three subclasses of abstract complexes. More specifically, we provide uniformity conditions in relation to the cardinality of the maximal members of such classes. By means of the notion of OSS-bijection, we prove a correspondence theorem between a subclass of closure operators and one of the aforementioned families of abstract complexes, which is similar to the classic correspondence theorem between closure operators and Moore systems. Next, we show an extension property of a binary relation induced by set systems when they belong to one of the above families. Finally, we provide a representation result in terms of pairings between sets for one of the three classes of abstract simplicial complexes studied in this work.

MSC:

13F55 Commutative rings defined by monomial ideals; Stanley-Reisner face rings; simplicial complexes
18D15 Closed categories (closed monoidal and Cartesian closed categories, etc.)
18D20 Enriched categories (over closed or monoidal categories)
06F20 Ordered abelian groups, Riesz groups, ordered linear spaces
06A15 Galois correspondences, closure operators (in relation to ordered sets)
08A02 Relational systems, laws of composition
16D10 General module theory in associative algebras
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Altmann, K.; Bagdeli, M.; Herzog, J.; Lu, D., Algebraically rigid simplicial complexes and graphs, J. Pure Appl. Algebra, 220, 8, 2914-2935 (2016) · Zbl 1430.13032
[2] Barr, M.,^⁎-Autonomous Categories, Lecture Notes in Mathematics, vol. 752 (1979), Springer-Verlag: Springer-Verlag Berlin
[3] Barr, M., The Chu construction, Theory Appl. Categ., 2, 2, 17-35 (1996) · Zbl 0857.18009
[4] Barr, M.,^⁎-Autonomous categories, J. Pure Appl. Algebra, 111, 1-20 (1996), revisited · Zbl 0857.18010
[5] Bergman, G. M.; Nielsen, P. P., On Vaughan Pratt’s crossword problem, J. Lond. Math. Soc. (2), 93, 825-845 (2016) · Zbl 1484.06032
[6] Birkhoff, G., Lattice Theory (1967), American Mathematical Society: American Mathematical Society Providence, Rhode Island · Zbl 0126.03801
[7] Bisi, C., On commuting polynomial automorphisms of \(\mathbb{C}^k, k \geq 3\), Math. Z., 258, 4, 875-891 (2008) · Zbl 1161.32006
[8] Bisi, C., On closed invariant sets in local dynamics, J. Math. Anal. Appl., 350, 1, 327-332 (2009) · Zbl 1151.37315
[9] Bisi, C., A Landau’s theorem in several complex variables, Ann. Mat. Pura Appl., 196, 2, 737-742 (2017) · Zbl 1366.32008
[10] Bonacini, P., Landal’s lemma in positive characteristic, J. Algebraic Geom., 18, 459-476 (2009)
[11] Bonacini, P.; Marino, L., On the Hilbert function of 0-dimensional schemes in \(\mathbb{P}^1 \times \mathbb{P}^1\), Collect. Math., 62, 1, 57-67 (2011) · Zbl 1228.13025
[12] Bonacini, P.; Gionfriddo, M.; Marino, L., Nesting House-designs, Discrete Math., 339, 4, 1291-1299 (2016) · Zbl 1329.05241
[13] Brumatti, P.; Simis, A., The module of derivations of a Stanley-Reisner ring, Proc. Am. Math. Soc., 123, 5, 1309-1318 (May 1995)
[14] Cignoli, R.; Marra, V., Stone duality for real-valued multisets, Forum Math., 24, 1317-1331 (2012) · Zbl 1273.06006
[15] Chiaselotti, G.; Gentile, T.; Infusino, F.; Oliverio, P. A., The adjacency matrix of a graph as a data table. A geometric perspective, Ann. Mat. Pura Appl., 196, 3, 1073-1112 (2017) · Zbl 1366.05029
[16] Chiaselotti, G.; Gentile, T.; Infusino, F., Pairings and related symmetry notions, Ann. Univ. Ferrara, 64, 2, 285-322 (November 2018)
[17] Chiaselotti, G.; Gentile, T.; Infusino, F., Symmetry geometry by pairings, J. Aust. Math. Soc., 106, 3, 342-360 (2019) · Zbl 1415.51005
[18] Chiaselotti, G.; Infusino, F., Notions from rough set theory in a generalized dependency relation context, Int. J. Approx. Reason., 98, 25-61 (2018) · Zbl 1446.03087
[19] Chiaselotti, G.; Gentile, T.; Infusino, F., Granular computing on information tables: families of subsets and operators, Inf. Sci., 442-443, 72-102 (2018)
[20] Chiaselotti, G.; Infusino, F.; Oliverio, P. A., Set relations and set systems induced by some families of integral domains, Adv. Math., 363, Article 106999 pp. (2020) · Zbl 1441.13025
[21] Chiaselotti, G.; Infusino, F., Alexandroff topologies and monoid actions, Forum Math., 32, 3, 795-826 (2020) · Zbl 1440.54001
[22] Cibils, C., Cohomology of incidence algebras and simplicial complexes, J. Pure Appl. Algebra, 56, 221-232 (1989) · Zbl 0683.16018
[23] Davey, B. A.; Priestley, H. A., Introduction to Lattices and Order (2002), Cambridge University Press: Cambridge University Press New York · Zbl 1002.06001
[24] Day, A., Filter monads, continuous lattices and closure systems, Can. J. Math., XXVII, 1, 50-59 (1975) · Zbl 0436.18003
[25] De Paiva, V., Dialectica and Chu constructions. Cousins?, Theory Appl. Categ., 17, 7, 127-152 (2007) · Zbl 1123.18004
[26] Droste, M.; Zhang, G.-Q., Bifinite Chu spaces, Log. Methods Comput. Sci., 6, 1:3, 1-20 (2010) · Zbl 1189.68073
[27] Faridi, S., The facet ideal of a simplicial complex, Manuscr. Math., 109, 159-174 (2002) · Zbl 1005.13006
[28] Faridi, S., Simplicial trees are sequentially Cohen-Macaulay, J. Pure Appl. Algebra, 190, 1-3, 121-136 (2004) · Zbl 1045.05029
[29] Gerhke, M.; Walker, E., On the structure of rough sets, Bull. Pol. Acad. Sci., Math., 40, 235-245 (1992)
[30] Gerhke, M.; Harding, J., Bounded lattice expansions, J. Algebra, 238, 345-371 (2001) · Zbl 0988.06003
[31] Huang, F.-P.; Droste, M.; Zhang, G.-Q., A monoidal category of bifinite Chu spaces, Electron. Notes Theor. Comput. Sci., 212, 285-297 (2008) · Zbl 1286.18002
[32] Jensen, S., The character degree simplicial complex of a finite group, J. Algebra, 440, 33-48 (2015) · Zbl 1335.20005
[33] Lang, S., Algebra (2005), Springer Verlag
[34] Lin, T. Y.; Chiang, I-Jen, A simplicial complex, a hypergraph, structure in the latent semantic space of document clustering, Int. J. Approx. Reason., 40, 55-80 (2005) · Zbl 1099.68086
[35] Liu, Y.; Zhu, W., The matroidal structures of the second type of covering-based rough set, (RSKT 2015 (2015)), 231-242
[36] Marra, V., Every Abelian l-group is ultrasimplicial, J. Algebra, 225, 872-884 (2000) · Zbl 0955.06013
[37] Marra, V., Weinberg’s theorem, Elliott’s ultrasimplicial property, and a characterisation of free lattice-ordered Abelian groups, Forum Math., 20, 505-513 (2008) · Zbl 1151.06009
[38] Moradi, S.; Khosh-Ahang, F., Expansion of a simplicial complex, J. Algebra Appl., 15, 1, Article 1650004 pp. (2016), (15 pages) · Zbl 1338.13041
[39] Pawlak, Z., Rough Sets - Theoretical Aspects of Reasoning About Data (1991), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 0758.68054
[40] Pedrycz, W., Granular Computing: Analysis and Design of Intelligent Systems (2013), CRC Press
[41] Pratt, V., The Stone gamut: a coordinatization of mathematics, (10th Annual Symposium on Logic in Computer Science (1995), IEEE Computer Society Press), 444-454
[42] Pratt, V., Chu spaces, (Notes for the School on Category Theory and Applications (1999), University of Coimbra), 70 pp. · Zbl 0954.18002
[43] Pratt, V., Chu spaces as a semantic bridge between linear logic and mathematics, Theor. Comput. Sci., 294, 439-471 (2003) · Zbl 1042.18002
[44] Reynaud, E., Algebraic fundamental group and simplicial complexes, J. Pure Appl. Algebra, 177, 203-214 (2003) · Zbl 1047.16006
[45] Sanahuja, S. M., New rough approximations for n-cycles and n-paths, Appl. Math. Comput., 276, 96-108 (2016) · Zbl 1410.68355
[46] Shen, L., Adjunctions in quantaloid-enriched categories · Zbl 1273.18022
[47] Shen, L.; Zhang, D., Categories enriched over a quantaloid: isbell adjunctions and Kan adjunctions, Theory Appl. Categ., 28, 20, 577-615 (2013) · Zbl 1273.18022
[48] Shen, L.; Tao, Y.; Zhang, D., Chu connections and back diagonals between \(\mathcal{Q} \)-distributors, J. Pure Appl. Algebra, 220, 5, 1858-1901 (2016) · Zbl 1338.18037
[49] Simovici, D. A.; Djeraba, C., Mathematical Tools for Data Mining (2014), Springer-Verlag: Springer-Verlag London · Zbl 1303.68006
[50] Smith, D. E., On the Cohen-Macaulay property in commutative algebra and simplicial topology, Pac. J. Math., 14, 165-196 (1990) · Zbl 0686.13008
[51] Tanga, J.; Shea, K.; Min, F.; Zhu, W., A matroidal approach to rough set theory, Theor. Comput. Sci., 471, 3, 1-11 (2013) · Zbl 1258.05022
[52] Wang, J.; Zhu, W., Applications of bipartite graphs and their adjacency matrices to covering-based rough sets, Fundam. Inform., 156, 237-254 (2017) · Zbl 1381.68293
[53] Zapatrin, R. R., Incidence algebra of simplicial complexes, Pure Math. Appl., 11, 105-118 (2001) · Zbl 0973.55011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.