×

On the energy cascade of 3-wave kinetic equations: beyond Kolmogorov-Zakharov solutions. (English) Zbl 1450.45009

Summary: In weak turbulence theory, the Kolmogorov-Zakharov spectra is a class of time-independent solutions to the kinetic wave equations. In this paper, we construct a new class of time-dependent isotropic solutions to the decaying turbulence problems (whose solutions are energy conserved), with general initial conditions. These solutions exhibit the interesting property that the energy is cascaded from small wavenumbers to large wavenumbers. We can prove that starting with a regular initial condition whose energy at the infinity wave number \(|p|=\infty\) is 0, as time evolves, the energy is gradually accumulated at \(\{|p|=\infty \}\). Finally, all the energy of the system is concentrated at \(\{|p|=\infty \}\) and the energy function becomes a Dirac function at infinity \(E\delta_{\{|p|=\infty \}}\), where \(E\) is the total energy. The existence of this class of solutions is, in some sense, the first complete rigorous mathematical proof based on the kinetic description for the energy cascade phenomenon for waves with quadratic nonlinearities. We only represent in this paper the analysis of the statistical description of acoustic waves (and equivalently capillary waves). However, our analysis works for other cases as well.

MSC:

45K05 Integro-partial differential equations
82C40 Kinetic theory of gases in time-dependent statistical mechanics
35Q20 Boltzmann equations
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Alonso, R., Gamba, I.M., Tran, M.-B.: The Cauchy problem and BEC stability for the quantum Boltzmann-Gross-Pitaevskii system for bosons at very low temperature. arXiv preprint arXiv:1609.07467 (2016)
[2] Anglin, JR; Ketterle, W., Bose-Einstein condensation of atomic gases, Nature, 416, 6877, 211-218 (2002)
[3] Arkeryd, Leif, On the Boltzmann equation. I. Existence, Arch. Ration. Mech. Anal., 45, 1-16 (1972) · Zbl 0245.76059
[4] Arlotti, L.; Banasiak, J., Strictly substochastic semigroups with application to conservative and shattering solutions to fragmentation equations with mass loss, J. Math. Anal. Appl., 293, 2, 693-720 (2004) · Zbl 1075.47023
[5] Balk, AM; Nazarenko, SV, Physical realizability of anisotropic weak-turbulence Kolmogorov spectra, Sov. Phys. JETP, 70, 1031-1041 (1990)
[6] Ball, JM; Carr, J., The discrete coagulation-fragmentation equations: existence, uniqueness, and density conservation, J. Stat. Phys., 61, 1-2, 203-234 (1990) · Zbl 1217.82050
[7] Banasiak, J.; Lamb, W., Global strict solutions to continuous coagulation-fragmentation equations with strong fragmentation, Proc. R. Soc. Edinb. Sect. A Math., 141, 3, 465-480 (2011) · Zbl 1228.35261
[8] Banasiak, J.; Lamb, W., Analytic fragmentation semigroups and continuous coagulation-fragmentation equations with unbounded rates, J. Math. Anal. Appl., 391, 1, 312-322 (2012) · Zbl 1246.35200
[9] Benney, DJ; Newell, AC, Random wave closures, Stud. Appl. Math., 48, 1, 29-53 (1969) · Zbl 0185.55404
[10] Benney, DJ; Saffman, PG, Nonlinear interactions of random waves in a dispersive medium, Proc. R. Soc. Lond. A, 289, 1418, 301-320 (1966)
[11] Bertoin, J., Random Fragmentation and Coagulation Processes (2006), Cambridge: Cambridge University Press, Cambridge · Zbl 1107.60002
[12] Bonacini, M.; Niethammer, B.; Velázquez, JJL, Self-similar solutions to coagulation equations with time-dependent tails: the case of homogeneity one, Arch. Ration. Mech. Anal., 43, 82-117 (2018)
[13] Canizo, JA; Mischler, S.; Mouhot, C., Rate of convergence to self-similarity for Smoluchowski’s coagulation equation with constant coefficients, SIAM J. Math. Anal., 41, 6, 2283-2314 (2010) · Zbl 1206.82055
[14] Connaughton, C., Numerical solutions of the isotropic 3-wave kinetic equation, Phys. D Nonlinear Phenom., 238, 23-24, 2282-2297 (2009) · Zbl 1423.82021
[15] Connaughton, C.; Krapivsky, PL, Aggregation-fragmentation processes and decaying three-wave turbulence, Phys. Rev. E, 81, 3, 035303 (2010)
[16] Connaughton, C.; Newell, AC, Dynamical scaling and the finite-capacity anomaly in three-wave turbulence, Phys. Rev. E, 81, 3, 036303 (2010)
[17] Costa, FP, Existence and uniqueness of density conserving solutions to the coagulation-fragmentation equations with strong fragmentation, J. Math. Anal. Appl., 192, 892-914 (1995) · Zbl 0839.34015
[18] Craciun, G., Tran, M.-B.: A reaction network approach to the convergence to equilibrium of quantum Boltzmann equations for Bose gases. arXiv preprint arXiv:1608.05438 (2016) · Zbl 1479.35594
[19] Degond, P.; Liu, J-G; Pego, RL, Coagulation-fragmentation model for animal group-size statistics, J. Nonlinear Sci., 27, 2, 379-424 (2017) · Zbl 1382.92260
[20] Drake, RL; Hidy, GM; Brock, JR, A general mathematical survey of the coagulation equation. Topics in current aerosol research (part 2), International Reviews in Aerosol Physics and Chemistry (1972), New York: Pergamon Press, New York
[21] Dubovskii, PB; Stewart, IW, Existence, uniqueness and mass conservation for the coagulation-fragmentation equation, Math Methods Appl Sci, 19, 7, 571-591 (1996) · Zbl 0852.45016
[22] Eibeck, A.; Wagner, W., Stochastic particle approximations for Smoluchoski’s coagualtion equation, Ann. Appl. Probab., 11, 4, 1137-1165 (2001) · Zbl 1021.60086
[23] Escobedo, M.; Laurençot, P.; Mischler, S.; Perthame, B., Gelation and mass conservation in coagulation-fragmentation models, J. Differ. Equ., 195, 1, 143-174 (2003) · Zbl 1133.82316
[24] Escobedo, M.; Mischler, S., Dust and self-similarity for the Smoluchowski coagulation equation, Annales de l’Institut Henri Poincare (C) Non Linear Analysis, 23, 331-362 (2006) · Zbl 1154.82024
[25] Escobedo, M.; Mischler, S.; Perthame, B., Gelation in coagulation and fragmentation models, Commun. Math. Phys., 231, 1, 157-188 (2002) · Zbl 1016.82027
[26] Escobedo, M.; Mischler, S.; Ricard, MR, On self-similarity and stationary problem for fragmentation and coagulation models, Annales de l’Institut Henri Poincare (C) Non Linear Analysis, 22, 99-125 (2005) · Zbl 1130.35025
[27] Escobedo, M.; Tran, M-B, Convergence to equilibrium of a linearized quantum Boltzmann equation for bosons at very low temperature, Kinet. Relat. Models, 8, 3, 493-531 (2015) · Zbl 1328.35144
[28] Escobedo, M.; Velázquez, JJL, Finite time blow-up and condensation for the bosonic Nordheim equation, Invent. Math., 200, 3, 761-847 (2015) · Zbl 1317.35256
[29] Escobedo, M.; Velázquez, JJL, On the theory of weak turbulence for the nonlinear Schrödinger equation, Mem. Am. Math. Soc., 238, 1124, v+107 (2015)
[30] Filbet, F.; Laurençot, P., Numerical simulation of the Smoluchowski coagulation equation, SIAM J. Sci. Comput., 25, 6, 2004-2028 (2004) · Zbl 1086.65123
[31] Folland, GB, Real Analysis: Modern Techniques and Their Applications (2013), Hoboken: Wiley, Hoboken
[32] Galtier, S.; Nazarenko, SV; Newell, AC; Pouquet, A., A weak turbulence theory for incompressible magnetohydrodynamics, J. Plasma Phys., 63, 5, 447-488 (2000)
[33] Gamba, I.M., Smith, L.M., Tran, M.-B.: On the wave turbulence theory for stratified flows in the ocean. M3AS Math. Models Methods Appl. Sci. 01(30)2020 · Zbl 1442.35461
[34] Germain, P., Ionescu, A.D., Tran, M.-B.: Optimal local well-posedness theory for the kinetic wave equation. arXiv preprint arXiv:1711.05587 (2017) · Zbl 1442.35287
[35] Giri, AK; Laurençot, P.; Warnecke, G., Weak solutions to the continuous coagulation equation with multiple fragmentation, Nonlinear Anal. Theory Methods Appl., 75, 4, 2199-2208 (2012) · Zbl 1236.35017
[36] Hasselmann, K., On the non-linear energy transfer in a gravity-wave spectrum part 1. general theory, J. Fluid Mech., 12, 4, 481-500 (1962) · Zbl 0107.21402
[37] Hasselmann, K., On the spectral dissipation of ocean waves due to white capping, Bound.-Layer Meteorol., 6, 1-2, 107-127 (1974)
[38] Jin, S.; Tran, M-B, Quantum hydrodynamic approximations to the finite temperature trapped bose gases, Phys. D Nonlinear Phenom., 45-57, 1, 380-381 (2018)
[39] Josserand, C.; Pomeau, Y., Nonlinear aspects of the theory of Bose-Einstein condensates, Nonlinearity, 14, 5, R25 (2001) · Zbl 1037.82031
[40] Kadomtsev, BB, Plasma Turbulence (1965), New York: Academic Press, New York
[41] Kierkels, AHM; Velázquez, JJL, On the transfer of energy towards infinity in the theory of weak turbulence for the nonlinear Schrödinger equation, J. Stat. Phys., 159, 3, 668-712 (2015) · Zbl 1331.35256
[42] Kierkels, AHM; Velázquez, JJL, On self-similar solutions to a kinetic equation arising in weak turbulence theory for the nonlinear Schrödinger equation, J. Stat. Phys., 163, 6, 1350-1393 (2016) · Zbl 1348.35237
[43] Kocharovsky, VV; Kocharovsky, VV, Microscopic theory of phase transitions in a critical region, Phys. Scr., 90, 10, 108002 (2015)
[44] Korotkevich, AO; Dyachenko, AI; Zakharov, VE, Numerical simulation of surface waves instability on a homogeneous grid, Phys. D, 321, 322, 51-66 (2016) · Zbl 1364.76030
[45] Lamb, W., Existence and uniqueness results for the continuous coagulation and fragmentation equation, Math. Methods Appl. Sci., 27, 6, 703-721 (2004) · Zbl 1049.35004
[46] Laurençot, P., On a class of continuous coagulation-fragmentation equations, J. Differ. Equ., 167, 2, 245-274 (2000) · Zbl 0978.35083
[47] Laurençot, P.; Mischler, S.; Degond, P.; Pareschi, L.; Russo, G., On coalescence equations and related models, Modeling and Computational Methods for Kinetic Equations, 321-356 (2004), Berlin: Springer, Berlin · Zbl 1105.82027
[48] Laurencot, P.; Van Roessel, H., Absence of gelation and self-similar behavior for a coagulation-fragmentation equation, SIAM J. Math. Anal., 47, 3, 2355-2374 (2015) · Zbl 1396.82013
[49] Leyvraz, F., Existence and properties of post-gel solutions for the kinetic equations of coagulation, J. Phys. A Math. Gen., 16, 12, 2861 (1983)
[50] Leyvraz, F.; Tschudi, HR, Singularities in the kinetics of coagulation processes, J. Phys. A Math. Gen., 14, 12, 3389 (1981) · Zbl 0481.92020
[51] Lu, X., The Boltzmann equation for Bose-Einstein particles: velocity concentration and convergence to equilibrium, J. Stat. Phys., 119, 5-6, 1027-1067 (2005) · Zbl 1135.82029
[52] Lu, X., The Boltzmann equation for Bose-Einstein particles: condensation in finite time, J. Stat. Phys., 150, 6, 1138-1176 (2013) · Zbl 1277.82041
[53] Lu, X., The Boltzmann equation for Bose-Einstein particles: regularity and condensation, J. Stat. Phys., 156, 3, 493-545 (2014) · Zbl 1296.82040
[54] Lu, X., Long time strong convergence to Bose-Einstein distribution for low temperature, Kinet. Relat. Models, 11, 4, 715-734 (2018) · Zbl 1405.82027
[55] Lu, X., Long time convergence of the Bose-Einstein condensation, J. Stat. Phys., 162, 3, 652-670 (2016) · Zbl 1334.35201
[56] Lukkarinen, J.; Spohn, H., Not to normal order? Notes on the kinetic limit for weakly interacting quantum fluids, J. Stat. Phys., 134, 5-6, 1133-1172 (2009) · Zbl 1169.82016
[57] Lukkarinen, J.; Spohn, H., Weakly nonlinear Schrödinger equation with random initial data, Invent. Math., 183, 1, 79-188 (2011) · Zbl 1235.76136
[58] Lvov, VS; Lvov, Y.; Newell, AC; Zakharov, V., Statistical description of acoustic turbulence, Phys. Rev. E, 56, 1, 390 (1997)
[59] Lvov, YV; Polzin, KL; Tabak, EG; Yokoyama, N., Oceanic internal-wave field: theory of scale-invariant spectra, J. Phys. Oceanogr., 40, 12, 2605-2623 (2010)
[60] McGrady, ED; Ziff, Robert M., “Shattering” transition in fragmentation, Phys. Rev. Lett., 58, 9, 892-895 (1987)
[61] Melzak, ZA, A scalar transport equation, Trans. Am. Math. Soc., 85, 2, 547-560 (1957) · Zbl 0077.30505
[62] Menon, G.; Pego, RL, Dynamical scaling in Smoluchowski’s coagulation equations: uniform convergence, SIAM Rev., 48, 4, 745-768 (2006) · Zbl 1117.70018
[63] M’etens, S.; Pomeau, Y.; Brachet, MA; Rica, S., Théorie cinétique d’un gaz de bose dilué avec condensat, C. R. Acad. Sci. Paris S’er. IIb M’ec. Phys. Astr., 327, 791-798 (1999) · Zbl 1016.82030
[64] Micha, R.; Tkachev, II, Turbulent thermalization, Phys. Rev. D, 70, 4, 043538 (2004)
[65] Nazarenko, S., Wave Turbulence (2011), Heidelberg: Springer, Heidelberg
[66] Newell, AC; Rumpf, B., Wave turbulence, Annu. Rev. Fluid Mech., 43, 59-78 (2011) · Zbl 1299.76006
[67] Nguyen, TT; Tran, M-B, On the kinetic equation in Zakharov’s wave turbulence theory for capillary waves, SIAM J. Math. Anal., 50, 2, 2020-2047 (2018) · Zbl 1459.82152
[68] Nguyen, TT; Tran, M-B, Uniform in time lower bound for solutions to a quantum Boltzmann equation of bosons, Arch. Ration. Mech. Anal., 231, 1, 63-89 (2019) · Zbl 1405.82028
[69] Nordheim, LW, On the kinetic methods in the new statistics and its applications in the electron theory of conductivity, Proc. R. Soc. Lond. Ser. A, 119, 689-698 (1928) · JFM 54.0988.05
[70] Norris, JR, Smoluchowski’s coagulation equation: uniqueness, nonuniqueness and a hydrodynamic limit for the stochastic coalescent, Ann. Appl. Probab., 9, 78-109 (1999) · Zbl 0944.60082
[71] Peierls, R., Zur kinetischen theorie der warmeleitung in kristallen, Annalen der Physik, 395, 8, 1055-1101 (1929) · JFM 55.0547.01
[72] Peierls, RE; Firez, M.; Weisskopf, VF, Quantum theory of solids, Theoretical Physics in the Twentieth Century (Pauli Memorial Volume), 140-160 (1960), New York: Interscience, New York
[73] Pomeau, Y.; Rica, S., Thermodynamics of a dilute Bose-Einstein gas with repulsive interactions, J. Phys. A Math. Gen., 33, 4, 691 (2000) · Zbl 0962.82003
[74] Pomeau, Y.; Tran, M-B, Statistical Physics of Non Equilibrium Quantum Phenomena (2019), Berlin: Springer, Berlin · Zbl 1451.82004
[75] Pushkarev, AN; Zakharov, VE, Turbulence of capillary waves, Phys. Rev. Lett., 76, 18, 3320 (1996)
[76] Pushkarev, AN; Zakharov, VE, Turbulence of capillary waves: theory and numerical simulation, Phys. D Nonlinear Phenom., 135, 1, 98-116 (2000) · Zbl 0960.76039
[77] Reichl, LE; Gust, ED, Transport theory for a dilute Bose-Einstein condensate, Phys. Rev. A, 88, 5, 053603 (2013)
[78] Reichl, LE; Tran, M-B, A kinetic equation for ultra-low temperature Bose-Einstein condensates, J. Phys. A Math. Theor., 52, 6, 063001 (2019) · Zbl 1425.82012
[79] Saha, J.; Kumar, J., The singular coagulation equation with multiple fragmentation, Zeitschrift für angewandte Mathematik und Physik, 66, 3, 919-941 (2015) · Zbl 1321.82030
[80] Spohn, H., The phonon Boltzmann equation, properties and link to weakly anharmonic lattice dynamics, J. Stat. Phys., 124, 2-4, 1041-1104 (2006) · Zbl 1106.82033
[81] Stewart, IW; Meister, E., A global existence theorem for the general coagulation-fragmentation equation with unbounded kernels, Math. Methods Appl. Sci., 11, 5, 627-648 (1989) · Zbl 0683.45006
[82] Tran, M.-B., Craciun, G., Smith, L.M., Boldyrev, S.: A reaction network approach to the theory of acoustic wave turbulence. Submitted (2018) · Zbl 1434.35040
[83] Vigil, RD; Ziff, RM, On the stability of coagulation-fragmentation population balances, J. Colloid Interface Sci., 133, 1, 257-264 (1989)
[84] Von Smoluchowski, M., Drei vortrage uber diffusion. brownsche bewegung und koagulation von kolloidteilchen, Z. Phys., 17, 557-585 (1916)
[85] White, Warren H., A Global Existence Theorem for Smoluchowski’s Coagulation Equations, Proceedings of the American Mathematical Society, 80, 2, 273 (1980) · Zbl 0442.34003
[86] Zakharov, VE, Weak turbulence in media with a decay spectrum, J. Appl. Mech. Tech. Phys., 6, 4, 22-24 (1965)
[87] Zakharov, VE, Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys., 9, 2, 190-194 (1968)
[88] Zakharov, VE, Statistical theory of gravity and capillary waves on the surface of a finite-depth fluid, Eur. J. Mech.-B/Fluids, 18, 3, 327-344 (1999) · Zbl 0960.76014
[89] Zakharov, VE; Filonenko, NN, Weak turbulence of capillary waves, J. Appl. Mech. Tech. Phys., 8, 5, 37-40 (1967)
[90] Zakharov, VE; L’vov, VS; Falkovich, G., Kolmogorov Spectra of Turbulence I: Wave turbulence (2012), Berlin: Springer, Berlin
[91] Zakharov, VE; Nazarenko, SV, Dynamics of the Bose-Einstein condensation, Phys. D, 201, 3-4, 203-211 (2005) · Zbl 1067.81029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.