×

Disturbance observer based integral terminal sliding mode control for permanent magnet synchronous motor system. (English) Zbl 1449.93024

Summary: This paper presents speed regulation issue of permanent magnet synchronous motor (PMSM) using a composite integral terminal sliding mode control scheme via a disturbance compensation technique. The PMSM \(q\)-axis and \(d\)-axis subsystems are firstly transformed into two linear subsystems by using feedback linearization technique, then, integral terminal sliding mode controller and finite-time controller are designed respectively. The proof of finite time stability are given for the PMSM closed-loop system. Compared with the corresponding asymptotic stability control method, the proposed controller can make the system output track the desired speed reference signal in finite time and obtain a better dynamic response and anti-disturbance performance. Meanwhile, considering the large chattering phenomenon caused by high switching gains, a composite integral terminal sliding mode control method based on disturbance observer is proposed to reduce chattering phenomenon. Through disturbance estimation based feed-forward compensation, the composite integral terminal sliding mode controller may take a smaller value for the switching gain without sacrificing disturbance rejection performance. Experimental results are provided to show the superiority of proposed control method.

MSC:

93B12 Variable structure systems
93B53 Observers
93C73 Perturbations in control/observation systems
93B52 Feedback control
93B18 Linearizations
93C95 Application models in control theory
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Bhat, S. P.; Bernstein, D. S., Finite-time stability of homogeneous systems., In: Proc. American Control Conference, Albuquerque 1997, pp. 2513-2516 · doi:10.1109/acc.1997.609245
[2] Bhat, S. P.; Bernstein, D. S., Finite-time stability of continuous autonomous systems., SIAM J. Control Optim. 38 (1998), 751-766 · Zbl 0945.34039 · doi:10.1137/s0363012997321358
[3] Bhat, S. P.; Bernstein, D. S., Continuous finite-time stabilization of the translational and rotational double integrators., IEEE Trans. Automat. Control 43 (1998), 678-682 · Zbl 0925.93821 · doi:10.1109/9.668834
[4] Bhat, S. P.; Bernstein, D. S., Geometric homogeneity with applications to finite time stability., Math. Control Signals System 17 (2005), 101-127 · Zbl 1110.34033 · doi:10.1007/s00498-005-0151-x
[5] Chen, W. H., Disturbance observer based control for nonlinear systems., IEEE ASME Trans. Mechatron. 9(2004), 4, 706-710 · doi:10.1109/tmech.2004.839034
[6] Chern, T. L.; Wu, Y. C., An optimal variable structure control with integral compensation for electrohydraulic position servo control systems., IEEE Trans. Ind. Electron. 39 (1992), 5, 460-463 · doi:10.1109/41.161478
[7] Feng, Y.; Zheng, J. F.; Yu, X. H.; Vu, Nguyen, High-order terminal sliding-mode observer design method for a permanent-magnet. synchronous motor control system., IEEE Trans. Ind. Electron. 56 (2009), 9, 3424-3431 · doi:10.1109/tie.2009.2025290
[8] Guo, L.; Chen, W. H., Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach., Int. J. Robust Nonlinear Control 15 (2005), 3, 109-125 · Zbl 1078.93030 · doi:10.1002/rnc.978
[9] Haimo, V. T., Finite-time controllers., SIAM J. Control Optim. 24 (1986), 760-770 · Zbl 0603.93005 · doi:10.1137/0324047
[10] Han, J., From PID to active disturbance rejection control., IEEE Trans. Ind. Electron. 56 (2009), 3, 900-906 · doi:10.1109/tie.2008.2011621
[11] Hsien, T. L.; Sun, Y. Y.; Tai, M. C., H1 control for a sensorless permanent-magnet Synchronous drive., IEE Proc. Electr. Power. Appl. 144 (1997), 3, 173-181 · doi:10.1049/ip-epa:19970988
[12] Khail, H. K., Nonlinear Systems PID predictive controller. Third Edition., Upper Saddle River, Prentice-Hall, NJ 1996
[13] Kim, H.; Son, J.; Lee, J., A high-speed sliding-mode observer for the sensorless speed control of a PMSM., IEEE Trans. Ind. Electron. 58 (2011), 9, 4069-4077 · doi:10.1109/tie.2010.2098357
[14] Kung, Y. S.; Tsai, M. H., FPGA-based speed control IC for PMSM drive with adaptive fuzzy control., IEEE Trans. Power. Electron. 22 (2007), 6, 2476-2486 · doi:10.1109/tpel.2007.909185
[15] Lai, C. K.; Shyu, K. K., A novel motor drive Design for incremental motion system via sliding-mode control method., IEEE Trans. Ind. Electron. 52 (2005), 2, 499-507 · doi:10.1109/tie.2005.844230
[16] Leu, V. Q.; Han, J. C.; Jung, J. W., Fuzzy sliding mode speed controller for PM synchronous motors with a load torque observer., IEEE Trans. Pow. Electron. 27 (2012), 3, 1530-1539 · doi:10.1109/tpel.2011.2161488
[17] Levant, A., Robust exact differentiation via sliding mode technique., Automatica 34 (1998), 3, 379-384 · Zbl 0915.93013 · doi:10.1016/s0005-1098(97)00209-4
[18] Li, J.; Li, S. H.; Chen, X. S., Adaptive speed control of PMSM servo system using a RBFN disturbance observer., Trans. Inst. Meas. Control 34 (2012), 5, 615-626 · doi:10.1177/0142331211410920
[19] Li, S. H.; Liu, Z. G., A daptive speed control for permanent-magnet synchronous motor system with variations of load inertia., IEEE Trans. Ind. Electron. 56 (2009), 8, 3050-3059 · doi:10.1109/tie.2009.2024655
[20] Li, S. H.; Liu, H. X.; Ding, S. H., A speed control for a PMSM using finite-time feedback control and disturbance compensation., Trans. Inst. Meas. Control. 32 (2010), 2, 170-187 · doi:10.1177/0142331209339860
[21] Li, S. H.; Tian, Y. P., Finite-time stability of cascaded time-varying systems., Int. J. Control 80 (2007), 4, 646-657 · Zbl 1117.93004 · doi:10.1080/00207170601148291
[22] Li, S. H.; Zong, K.; Liu, H. X., A composite speed controller based on a second-order model of permanent magnet synchronous motor system., Trans. Inst. Meas. Control. 33 (2011), 5, 522-541 · doi:10.1177/0142331210371814
[23] Li, S. H.; Zhou, M. M.; Yu, X. H., Design and implementation of terminal sliding mode control method for PMSM speed regulation system., IEEE Trans. Ind. Inform. 9 (2013), 4, 1879-1891 · doi:10.1109/tii.2012.2226896
[24] Luo, Y.; Chen, Y. Q.; Ahnc, H. S.; Pi, Y., Fractional order robust control for cogging effect compensation in PMSM position servo systems: stability analysis and experiments., Control. Eng. Practice. 18 (2010), 9, 1022-1036 · doi:10.1016/j.conengprac.2010.05.005
[25] She, J. H.; Fang, M. Y.; Ohyama, H.; Hashimoto, H.; Wu, M., Improving disturbance-rejection performance based on an equivalent-input-disturbance approach., IEEE Trans. Ind. Electron. 55 (2008), 1, 380-389 · doi:10.1109/tie.2007.905976
[26] Tang, R. Y., Modern permanent magnet synchronous motor theory and design., Machinery Industry Press, Beijing 1997
[27] Umeno, T.; Hori, Y., Robust speed control of DC servo motors using modern two degrees-of-freedom controller design., IEEE Trans. Ind. Electron. 38 (1991), 5, 363-368 · doi:10.1109/41.97556
[28] Vilath, G.; Rahman, M.; Tseng, K.; Uddin, M., Nonlinear control of interior permanent magnet synchronous motor., IEEE Trans. Indust. Appl. 39 (2003), 2, 408-415 · doi:10.1109/tia.2003.808932
[29] Wang, G. J.; Fong, C. T.; Chang, K. J., Neural-network-based self-tuning PI controller for precise motion control of PMAC motors., IEEE Trans. Ind. Electron. 48 (2001), 2, 408-415 · doi:10.1109/41.915420
[30] Wang, J.; Wang, F.; Wang, G.; al., et, Generalized proportional integral observer-based robust finite control set predictive current control for induction motor systems with time-varying disturbances., IEEE Trans. Ind. Informa. 14 (2018), 9, 4159-4168 · doi:10.1109/tii.2018.2818153
[31] Wang, J.; Wang, F.; Zhang, Z.; al., et, Design and implementation of disturbance compensation-based enhanced robust finite control set predictive torque control for induction motor systems., IEEE Trans. Ind. Inforn. 13 (2017), 5, 2645-2656 · doi:10.1109/tii.2017.2679283
[32] Yang, J.; Li, S. H.; Yu, X. H., Sliding mode control for systems with mismatched uncertainties via a disturbance observer., IEEE Trans. Ind. Electron. 60 (2013), 1, 160-169 · doi:10.1109/tie.2012.2183841
[33] Yang, J.; Wu, H.; Hu, L.; al., et, Robust predictive speed regulation of converter-driven DC Motors via a discrete-time reduced-order GPIO., IEEE Trans. Ind. Electron, online (2018)
[34] Zarchi, H. A.; Markadeh, G. R. A.; Soltani, J., Direct torque and flux regulation of synchronous reluctance motor drives based on input-output feedback linearization., Energy. Convers. Manag. 51 (2010), 1, 71-80 · doi:10.1016/j.enconman.2009.08.031
[35] Zhou, J.; Wang, Y., Adaptive backstepping speed controller design for a Permanent magnet synchronous motor., IEE Proc. Electr. Power. Appl. 149 (2002), 2, 165-72 · doi:10.1049/ip-epa:20020187
[36] Zong, Q.; Zhao, Z. S.; Zhang, J., Higher order sliding mode control with self-tuning law based on integral sliding mode., IET Contr. Theory. Appl. 4 (2010), 7, 1282-1289 · doi:10.1049/iet-cta.2008.0610
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.