×

Tau approximate solution of linear pantograph Volterra delay-integro-differential equation. (English) Zbl 1449.65147

Summary: The operational Tau method is used to find numerical solution of linear pantograph Volterra delay-integro-differential equation. Meanwhile, error estimate and convergence analysis are given for the operational Tau method. Numerical results reveal that the method is effective.

MSC:

65L03 Numerical methods for functional-differential equations
65R20 Numerical methods for integral equations
65L20 Stability and convergence of numerical methods for ordinary differential equations
45J05 Integro-ordinary differential equations

Software:

Chebpack
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abbasbandy, S.; Taati, A., Numerical solution of the system of nonlinear Volterra integro-differential equations with nonlinear differential part by the operational Tau method and error estimation, J Comput Appl Math, 231, 106-113 (2009) · Zbl 1170.65101 · doi:10.1016/j.cam.2009.02.014
[2] Aliabadi, MH; Shahmorad, S., A matrix formulation of the Tau method for Fredholm and Volterra linear integro-differential equations, Korean J Comput Appl Math, 9, 497-507 (2002) · Zbl 1005.65148 · doi:10.1007/BF03021557
[3] Brunner, H., Collocations methods for volterra integral and related functional equations (2004), Cambridge: Cambridge University Press, Cambridge · Zbl 1059.65122
[4] Brunner, H.; Hu, Q., Optimal superconvergence results for delay integro-differential equations of pantograph type, SIAM J Numer Anal, 45, 986-1004 (2007) · Zbl 1144.65083 · doi:10.1137/060660357
[5] Brunner, H.; Xie, H.; Zhang, R., Analysis of collocation solutions for a class of functional equations with vanishing delays, IMA J Numer Anal, 31, 698-718 (2011) · Zbl 1259.65205 · doi:10.1093/imanum/drp051
[6] Chen, H.; Zhang, CJ, Block boundary value methods for solving Volterra integral and integro-differential equations, J Comput Appl Math, 236, 2822-2837 (2012) · Zbl 1241.65119 · doi:10.1016/j.cam.2012.01.018
[7] Cordero, LF; Escalante, R., Segmented Tau approximation for test neutral functional differential equations, Appl Math Comput, 187, 725-740 (2007) · Zbl 1117.65102
[8] Duan, S., Estimation for the approximation order of the binary Bernstein polynomial, J South Cent Univ Natl Nat Sci, 19, 62-66 (2000)
[9] Ebadi, G.; Rahimi-Ardabili, MY; Shahmorad, S., Numerical solution of the nonlinear Volterra integro-differential equations by the Tau method, Appl Math Comput, 188, 1580-1586 (2007) · Zbl 1119.65123
[10] Guan, Q.; Zhang, R.; Zou, Y., Analysis of collocation solutions for nonstandard Volterra integral equations, IMA J Numer Anal, 32, 1755-1785 (2012) · Zbl 1259.65214 · doi:10.1093/imanum/drr038
[11] Kress, R., Numerical analysis (1998), New York: Springer, New York · Zbl 0913.65001
[12] Lanczos, C., Trigonometric interpolation of empirical and analytical functions, J Math Phys, 17, 123-199 (1938) · Zbl 0020.01301 · doi:10.1002/sapm1938171123
[13] Liu, KM; Pan, CK, The automatic solution to systems of ordinary differential equations by the Tau method, Comput Math Appl, 38, 197-210 (1999) · Zbl 0945.65073 · doi:10.1016/S0898-1221(99)00275-8
[14] Lyusternik, L.; Chervonenkis, O.; Yanpol’skii, A., Handbook for computing elementary functions (1965), Oxford: Pergamon, Oxford · Zbl 0154.16703
[15] Ming, WY; Huang, CM, Collocation methods for Volterra functional integral equations with non-vanishing delays, Appl Math Comput, 296, 198-214 (2017) · Zbl 1411.65170
[16] Ming, WY; Huang, CM; Zhao, LB, Optimal superconvergence results for Volterra functional integral equations with proportional vanishing delays, Appl Math Comput, 320, 292-301 (2018) · Zbl 1426.65215
[17] Onumanyi, P.; Ortiz, EL, Numerical solution of stiff and singularly perturbed boundary value problems with a segmented-adaptive formulation of the Tau method, Math Comput, 43, 189-203 (1984) · Zbl 0574.65091 · doi:10.1090/S0025-5718-1984-0744930-9
[18] Ortiz, EL, The Tau method, SIAM J Numer Anal, 6, 480-492 (1969) · Zbl 0195.45701 · doi:10.1137/0706044
[19] Ortiz, EL; Samara, H., An operational approach to the Tau method for the numerical solution of non-linear differential equations, Computing, 27, 15-25 (1981) · Zbl 0449.65053 · doi:10.1007/BF02243435
[20] Shen, J.; Tang, T., Spectral and high-order methods with applications (2006), Beijing: Science, Beijing · Zbl 1234.65005
[21] Tang, T.; Xu, X.; Cheng, J., On spectral methods for Volterra integral equations and the convergence analysis, J Comput Math, 26, 825-837 (2008) · Zbl 1174.65058
[22] Trif, D., Direct operatorial Tau method for pantograph-type equations, Appl Math Comput, 219, 2194-2203 (2012) · Zbl 1298.34143
[23] Vanani, SK; Soleymani, F., Tau approximate solution of weakly singular Volterra integral equations, Math Comput Model, 57, 494-502 (2013) · Zbl 1305.65247 · doi:10.1016/j.mcm.2012.07.004
[24] Wei, YX; Chen, YP, Legendre spectral collocation methods for pantograph Volterra delay-integro-differential equations, J Sci Comput, 53, 672-688 (2012) · Zbl 1264.65218 · doi:10.1007/s10915-012-9595-6
[25] Xie, H.; Zhang, R.; Brunner, H., Collocation methods for general Volterra functional integral equations with vanishing delays, SIAM J Sci Comput, 33, 3303-3332 (2011) · Zbl 1239.65085 · doi:10.1137/100818595
[26] Yang, K.; Zhang, R., Analysis of continuous collocation solutions for a kind of Volterra functional integral equations with proportional delay, J Comput Appl Math, 236, 743-752 (2011) · Zbl 1232.65189 · doi:10.1016/j.cam.2011.06.006
[27] Zhang, CJ; Vandewalle, S., General linear methods for Volterra integro-differential equations with memory, SIAM J Sci Comput, 27, 2010-2031 (2006) · Zbl 1104.65133 · doi:10.1137/040607058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.