Durdiev, D. K.; Zhumaev, Zh. Zh. Problem of determining a multidimensional thermal memory in a heat conductivity equation. (English) Zbl 1449.35426 Methods Funct. Anal. Topol. 25, No. 3, 218-225 (2019). The authors study the problem of determining the functions \(u(x,t)\), \(K(x',t)\), \(x=(x_1,x_2,\ldots ,x_{n-1},x_n)=(x',x_n)\in \mathbb{R}^n\), \(t>0\), from the equation \[ u_t-\Delta u=\int\limits_0^t K(x',t-\tau)\Delta u(x, \tau)\,d\tau,\quad x\in \mathbb{R}^n,t\in [0,T], \] with appropriate initial and boundary conditions. The existence and uniqueness results are obtained. Reviewer: Anatoly N. Kochubei (Kyïv) Cited in 2 Documents MSC: 35R09 Integro-partial differential equations 35R30 Inverse problems for PDEs Keywords:heat conductivity equation; thermal memory; inverse problem PDF BibTeX XML Cite \textit{D. K. Durdiev} and \textit{Zh. Zh. Zhumaev}, Methods Funct. Anal. Topol. 25, No. 3, 218--225 (2019; Zbl 1449.35426) Full Text: Link OpenURL