zbMATH — the first resource for mathematics

Modelling releases of sterile mosquitoes with different strategies. (English) Zbl 1448.92220
Summary: To prevent the transmissions of malaria, dengue fever, or other mosquito-borne diseases, one effective weapon is the sterile insect technique in which sterile mosquitoes are released to reduce or eradicate the wild mosquito population. To study the impact of the sterile insect technique on disease transmission, we formulate discrete-time mathematical models, based on difference equations, for the interactive dynamics of the wild and sterile mosquitoes, incorporating different strategies in releasing sterile mosquitoes. We investigate the model dynamics and compare the impact of the different release strategies. Numerical examples are given to demonstrate rich dynamical features of the models.

92D25 Population dynamics (general)
92D30 Epidemiology
39A28 Bifurcation theory for difference equations
Full Text: DOI
[1] Allee W.C., The Social Life of Animals, 2nd ed., Beacon Press, Boston, MA, 1958. [Google Scholar]
[2] Alphey L., Benedict M., Bellini R., Clark G.G., Dame D.A., Service M.W., and Dobson S.L., Sterile-insect methods for control of mosquito-borne diseases: An analysis, Vector-Borne Zoonotic Dis. 10 (2010), pp. 295-311. doi: 10.1089/vbz.2009.0014[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[3] Barclay H.J., The sterile insect release method for species with two-stage life cycles, Res. Popul. Ecol. 21 (1980), pp. 165-180. doi: 10.1007/BF02513619[Crossref], [Google Scholar]
[4] Barclay H.J., Pest population stability under sterile releases, Res. Popul. Ecol. 24 (1982), pp. 405-416. doi: 10.1007/BF02515585[Crossref], [Google Scholar]
[5] Barclay H.J., Modeling incomplete sterility in a sterile release program: Interactions with other factors, Popul. Ecol. 43 (2001), pp. 197-206. doi: 10.1007/s10144-001-8183-7[Crossref], [Web of Science ®], [Google Scholar]
[6] Barclay H.J., Mathematical models for the use of sterile insects, in Sterile Insect Technique. Principles and Practice in Area-Wide Integrated Pest Management, V.A. Dyck, J. Hendrichs, and A.S. Robinson, eds., Springer, Heidelberg, 2005, pp. 147-174. [Google Scholar]
[7] Barclay H.J. and Mackuer M., The sterile insect release method for pest control: A density dependent model, Environ. Entomol. 9 (1980), pp. 810-817. doi: 10.1093/ee/9.6.810[Crossref], [Web of Science ®], [Google Scholar]
[8] Bartlett A.C. and Staten R.T., Sterile insect release method and other genetic control strategies. Radcliffe’s IPM World Textbook, 1996, http://ipmworld.umn.edu/chapters/bartlett.htm. [Google Scholar]
[9] Cai L., Ai S., and Li J., Dynamics of mosquitoes populations with different strategies for releasing sterile mosquitoes, SIAM, J. Appl. Math. (to appear in 2014). [Web of Science ®], [Google Scholar] · Zbl 1320.34071
[10] Dennis B., Allee effects: Population growth, critical density, and the chance of extinction, Nat. Resour. Model. 3 (1989), pp. 481-538. [Google Scholar] · Zbl 0850.92062
[11] Dumont Y. and Tchuenche J.M., Mathematical studies on the sterile insect technique for the Chikungunya disease and Aedes albopictus, J. Math. Biol. 65 (2012), pp. 809-854. doi: 10.1007/s00285-011-0477-6[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1311.92175
[12] Dye C., Intraspecific competition amongst larval aedes aegypti: Food exploitation or chemical interference, Ecol. Entomol. 7 (1982), pp. 39-46. doi: 10.1111/j.1365-2311.1982.tb00642.x[Crossref], [Web of Science ®], [Google Scholar]
[13] Esteva L. and Yang H.M., Mathematical model to assess the control of Aedes aegypti mosquitoes by the sterile insect technique, Math. Biosci. 198 (2005), pp. 132-147. doi: 10.1016/j.mbs.2005.06.004[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1090.92048
[14] Fister K.R., McCarthy M.L., Oppenheimer S.F., and Collins C., Optimal control of insects through sterile insect release and habitat modification, Math. Biosci. 244 (2013), pp. 201-212. doi: 10.1016/j.mbs.2013.05.008[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1280.92025
[15] Floresa J.C., A mathematical model for wild and sterile species in competition: immigration, Physica A 328 (2003), pp. 214-224. doi: 10.1016/S0378-4371(03)00545-4[Crossref], [Web of Science ®], [Google Scholar]
[16] Gleiser R.M., Urrutia J., and Gorla D.E., Effects of crowding on populations of aedes albifasciatus larvae under laboratory conditions, Entomologia Exp. Applicata 95 (2000), pp. 135-140. doi: 10.1046/j.1570-7458.2000.00651.x[Crossref], [Web of Science ®], [Google Scholar]
[17] Li Jia, Simple mathematical models for interacting wild and transgenic mosquito populations, Math. Biosci. 189 (2004), pp. 39-59. doi: 10.1016/j.mbs.2004.01.001[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1072.92053
[18] Li Jia, Simple stage-structured models for wild and transgenic mosquito populations, J. Diff. Equ. Appl. 17 (2009), pp. 327-347. doi: 10.1080/10236190802566491[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1159.92033
[19] Li Jia, Modeling of mosquitoes with dominant or recessive transgenes and Allee effects, Math. Biosci. Eng. 7 (2010), pp. 101-123. [Crossref], [Web of Science ®], [Google Scholar] · Zbl 1184.92031
[20] Li Jia, Song B., and Wang X., An extended Ricker population model with Allee effects, J. Diff. Equ. Appl. 13 (2007), pp. 309-321. doi: 10.1080/10236190601079191[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1110.92050
[21] May R.M., Theoretical Ecology: Principles and Applications, Saunders, Philadelphia, 1976. [Google Scholar]
[22] May R.M. and Oster G.F., Bifurcations and dynamic complexity in simple ecological models, Amer. Nat. 110 (1976), pp. 573-599. doi: 10.1086/283092[Crossref], [Web of Science ®], [Google Scholar]
[23] May R.M., Conway G.R., Hassell M.P., and Southwood T.R.E., Time delays, density-dependence and single-species oscillations, J. Animal Ecol. 43 (1974), pp. 747-770. doi: 10.2307/3535[Crossref], [Web of Science ®], [Google Scholar]
[24] Otero M., Solari H.G., and Schweigmann N., A stochastic population dynamics model for Aedes aegypti: formulation and application to a city with temperate climate, Bull. Math. Biol. 68 (2006), pp. 1945-1974. doi: 10.1007/s11538-006-9067-y[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1296.92215
[25] Ricker W.E., Stock and recruitment, J. Fish. Res. Board Canada 11 (1954), pp. 559-623. doi: 10.1139/f54-039[Crossref], [Google Scholar]
[26] Schreiber S.J., Allee effects, extinctions, and chaotic transients in simple population models, Theor. Popul. Biol. 64 (2003), pp. 201-209. doi: 10.1016/S0040-5809(03)00072-8[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1104.92053
[27] Thome R.C.A., Yang H.M., and Esteva L., Optimal control of Aedes aegypti mosquitoes by the sterile insect technique and insecticide, Math. Biosci. 223 (2010), pp. 12-23. doi: 10.1016/j.mbs.2009.08.009[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1180.92058
[28] Wikipedia, Sterile insect technique, 2013, http://en.wikipedia.org/wiki/Sterile_insect_technique. [Google Scholar]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.