Effects of dust-charge gradient and polarization forces on the waves and Jeans instability in strongly coupled dusty plasma. (English) Zbl 1448.76174

Summary: The effects of dust charge gradient (DCG) force and polarization force have been investigated on the properties of dust acoustic wave (DAW) and linear Jeans instability in strongly coupled dusty plasma. In the kinetic regime, DCG and polarization forces modify the DAW mode and couple with compressional viscoelastic wave mode. The Jeans instability criterion and critical wavenumber have been modified due to DCG force, polarization force and strong coupling effects. The results have been discussed in the warm photodisassociation region and in the laboratory complex plasmas. The strong correlation effect and the charge variation parameter stabilize the growth rate of Jeans instability. But, the polarization parameter stabilize the growth rate for positively charged dust grains and destabilize for negatively charged dust grains. The implications of charge gradient and polarization parameters are discussed for lower and higher charges in the laboratory complex plasma which decreases the growth of the propagating DAW.


76T15 Dusty-gas two-phase flows
82D10 Statistical mechanics of plasmas
76E20 Stability and instability of geophysical and astrophysical flows
76E25 Stability and instability of magnetohydrodynamic and electrohydrodynamic flows
Full Text: DOI


[1] Merlino, R. L.; Goree, A. J., Phys. Today, 57, 32 (2004)
[2] Krasheninnikov, S. I.; Smirnov, R. D.; Rudakov, D. L., Plasma Phys. Control. Fusion, 53, Article 083001 pp. (2011)
[3] Ichimaru, S., Rev. Mod. Phys., 54, 1017 (1982)
[4] Kraeft, W. D., Plasma Phys. Control. Fusion, 49, 1111 (2007)
[5] Koester, D.; Chanmugam, G., Rep. Prog. Phys., 53, 837 (1990)
[6] Kaw, P. K.; Sen, A., Phys. Plasmas, 5, 3552 (1998)
[7] Rosenberg, M.; Shukla, P. K., Plasma Phys. Control. Fusion, 46, 1807 (2004)
[8] Thomas, H.; Morfill, G. E.; Demmel, V.; Goree, J.; Feuerbacher, B.; Mohimann, D., Phys. Rev. Lett., 73, 652 (1994)
[9] Khrapak, S. A.; Khrapak, A. G.; Kryuchkov, N. P.; Yurchenko, S. O., J. Chem. Phys., 150, Article 104503 pp. (2019)
[10] Cousens, S. E.; Sultana, S.; Kourakis, I.; Yaroshenko, V.; Verheest, F.; Hellberg, M. A., Phys. Rev. E, 86, Article 066404 pp. (2012)
[11] Merlino, R. L.; Heinrich, J. R.; Kim, S.-H.; Meyer, J. K., Plasma Phys. Control. Fusion, 54, Article 124014 pp. (2012)
[12] Merlino, R. L.; Barken, A.; Thompson, C.; Angelo, N. D., Plasma Phys. Control. Fusion, 39, A421 (1997)
[13] Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability (1961), Clarendon Press · Zbl 0142.44103
[14] Avinash, K.; Shukla, P. K., Phys. Lett. A, 189, 470 (1994)
[15] Rao, N. N.; Verheest, F., Phys. Lett. A, 268, 390 (2000)
[16] Verheest, F.; Shukla, P. K.; Jacobs, G.; Yaroshenko, V. V., Phys. Rev. E, 68, Article 027402 pp. (2003)
[17] Verheest, F.; Cadez, V. M., Phys. Rev. E, 66, Article 056404 pp. (2002)
[18] Pandey, B. P.; Holst, B. V.D.; Vranjes, J.; Poedts, S., Pramana J. Phys., 61, 109 (2003)
[19] Prajapati, R. P.; Bhakta, S., Phys. Lett. A, 379, 2723 (2015)
[20] Abbasi, A.; Vaziri, M. R., Plasma Sci. Technol., 20, Article 035301 pp. (2018)
[21] Gaurav, S.; Avinash, K., Phys. Plasmas, 25, Article 114503 pp. (2018)
[22] Pajouh, H.; Afshari, N., Phys. Lett. A, 380, 3810 (2016)
[23] Prajapati, R. P.; Bhakta, S.; Chhajlani, R. K., Phys. Plasmas, 23, Article 053703 pp. (2016)
[24] Akbari-Moghanjoughi, M., Phys. Plasmas, 21, Article 082117 pp. (2014)
[25] Kratter, K.; Lodato, G., Annu. Rev. Astron. Astrophys., 54, 271 (2016)
[26] Tsintsadze, N. L., Phys. Plasmas, 25, Article 073705 pp. (2018)
[27] Hamaguchi, S.; Farouki, R. T., Phys. Rev. E, 49, 4430 (1994)
[28] Khrapak, S. A.; Ivlev, A. V.; Yaroshenko, V. V.; Morfill, G. E., Phys. Rev. Lett., 102, Article 245004 pp. (2009)
[29] Zobaer, M. S.; Mamun, A., Astrophys. Space Sci., 347, 145 (2013)
[30] Khrapak, A. G.; Khrapak, S. A., Phys. Plasmas, 25, Article 034502 pp. (2018)
[31] He, K.; Chen, H.; Liu, S., Phys. Plasmas, 25, Article 083712 pp. (2018)
[32] Avinash, K., Phys. Plasmas, 14, Article 012904 pp. (2007)
[33] Frenkel, Y. I., Kinetic Theory of Liquids (1946), Clarendon Press: Clarendon Press Oxford · Zbl 0063.01447
[34] Khrapak, S. A.; Thomas, H. M., Phys. Rev. E, 91, Article 023108 pp. (2015)
[35] Vaulina, O.; Khrapak, S. A.; Morfill, G., Phys. Rev. E, 66, Article 016404 pp. (2002)
[36] Kalman, G.; Rosenberg, M.; DeWitt, H. E., Phys. Rev. Lett., 84, 6030 (2000)
[37] Fortov, V. E.; Khrapak, A. G.; Khrapak, S. A.; Molotkov, V. I.; Petrov, O. F., Phys. Usp., 47, 447 (2004)
[38] Shukla, P. K.; Sandberg, I., Phys. Rev. E, 67, Article 036401 pp. (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.