×

Cassini states of a rigid body with a liquid core. (English) Zbl 1448.70009

Summary: The purpose of this work is to determine the location and stability of the Cassini states of a celestial body with an inviscid fluid core surrounded by a perfectly rigid mantle. Both situations where the rotation speed is either non-resonant or trapped in a \(p:1\) spin-orbit resonance where \(p\) is a half integer are addressed. The rotation dynamics is described by the Poincaré-Hough model which assumes a simple motion of the core. The problem is written in a non-canonical Hamiltonian formalism. The secular evolution is obtained without any truncation in obliquity, eccentricity or inclination. The condition for the body to be in a Cassini state is written as a set of two equations whose unknowns are the mantle obliquity and the tilt angle of the core spin axis. Solving the system with Mercury’s physical and orbital parameters leads to a maximum of 16 different equilibrium configurations, half of them being spectrally stable. In most of these solutions, the core is highly tilted with respect to the mantle. The model is also applied to Io and the Moon.

MSC:

70E15 Free motion of a rigid body
86A25 Geo-electricity and geomagnetism

Software:

TRIP
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Anderson, JD; Jacobson, RA; Lau, EL, Io’s gravity field and interior structure, J. Geophys. Res., 106, E12, 32963-32970 (2001)
[2] Baland, R-M; van Hoolst, T.; Yseboodt, M.; Karatekin, Ö., Titan’s obliquity as evidence of a subsurface ocean?, Astron. Astrophys., 530, A141 (2011) · Zbl 1260.85002
[3] Baland, R-M; Tobie, G.; Lefèvre, A.; Van Hoolst, T., Titan’s internal structure inferred from its gravity field, shape, and rotation state, Icarus, 237, 29-41 (2014)
[4] Baland, R-M; Yseboodt, M.; Rivoldini, A.; Van Hoolst, T., Obliquity of Mercury: influence of the precession of the pericenter and of tides, Icarus, 291, 136-159 (2017)
[5] Beletsky, VV, Essays on the Motion of Celestial Bodies (2001), Basel: Springer, Basel · Zbl 0974.70002
[6] Bills, BG; Nimmo, F., Rotational dynamics and internal structure of Titan, Icarus, 214, 351-355 (2011)
[7] Boué, G., The two rigid body interaction using angular momentum theory formulae, Celest. Mech. Dyn. Astron., 128, 2-3, 261-273 (2017) · Zbl 1367.70019
[8] Boué, G.; Efroimsky, M., Tidal evolution of the Keplerian elements, Celest. Mech. Dyn. Astron., 131, 30 (2019) · Zbl 1451.70009
[9] Boué, G.; Laskar, J., Precession of a planet with a satellite, Icarus, 185, 2, 312-330 (2006)
[10] Boué, G.; Laskar, J., Spin axis evolution of two interacting bodies, Icarus, 201, 2, 750-767 (2009)
[11] Boué, G.; Laskar, J.; Kuchynka, P., Speed limit on Neptune migration imposed by Saturn tilting, Astrophys. J. Lett., 702, 1, L19-L22 (2009)
[12] Boué, G.; Correia, ACM; Laskar, J., Complete spin and orbital evolution of close-in bodies using a Maxwell viscoelastic rheology, Celest. Mech. Dyn. Astron., 126, 1-3, 31-60 (2016) · Zbl 1348.70023
[13] Boué, G.; Rambaux, N.; Richard, A., Rotation of a rigid satellite with a fluid component: a new light onto Titan’s obliquity, Celest. Mech. Dyn. Astron., 129, 449-485 (2017) · Zbl 1379.70042
[14] Bouquillon, S.; Kinoshita, H.; Souchay, J., Extension of Cassini’s laws, Celest. Mech. Dyn. Astron., 86, 1, 29-57 (2003) · Zbl 1062.70587
[15] Brasser, R.; Lee, MH, Tilting Saturn without tilting Jupiter: constraints on giant planet migration, Astron. J., 150, 5, 157 (2015)
[16] Cassini, G.D.: De l’origine et du progrès de l’astronomie et de son usage dans la géographie et dans la navigation. In: Recueil d’observations faites en plusieurs voyages par ordre de sa Majesté pour perfectionner l’astronomie et la géographie, Imprimerie Royale (1693) . 10.3931/e-rara-7547
[17] Colombo, G., Cassini’s second and third laws, Astron. J., 71, 891 (1966)
[18] Dufey, J.; Noyelles, B.; Rambaux, N.; Lemaitre, A., Latitudinal librations of Mercury with a fluid core, Icarus, 203, 1, 1-12 (2009)
[19] Gastineau, M.; Laskar, J., Trip: a computer algebra system dedicated to celestial mechanics and perturbation series, ACM Commun. Comput. Algebra, 44, 3-4, 194-197 (2011) · Zbl 1308.68172 · doi:10.1145/1940475.1940518
[20] Hamilton, DP; Ward, WR, Tilting Saturn. II. Numerical model, Astron. J., 128, 5, 2510-2517 (2004)
[21] Henrard, J., The rotation of Io with a liquid core, Celest. Mech. Dyn. Astron., 101, 1-12 (2008) · Zbl 1308.76296
[22] Hough, SS, The oscillations of a rotating ellipsoidal shell containing fluid, Philos. Trans. R. Soc. Lond., 186, 469-506 (1895) · JFM 26.0889.01
[23] Joachimiak, T., Maciejewski, A.J.: Modeling precessional motion of neutron Stars. In: Lewandowski, W., Maron, O., Kijak, J. (eds) Electromagnetic Radiation from Pulsars and Magnetars, Astronomical Society of the Pacific Conference Series, vol. 466, p. 183 (2012)
[24] Krechetnikov, R.; Marsden, JE, Dissipation-induced instabilities in finite dimensions, Rev. Mod. Phys., 79, 2, 519-553 (2007) · Zbl 1205.70002
[25] Lainey, V.; Duriez, L.; Vienne, A., Synthetic representation of the Galilean satellites’ orbital motions from L1 ephemerides, Astron. Astrophys., 456, 2, 783-788 (2006)
[26] Meyer, J.; Wisdom, J., Precession of the lunar core, Icarus, 211, 1, 921-924 (2011)
[27] Noyelles, B., Behavior of nearby synchronous rotations of a Poincaré-Hough satellite at low eccentricity, Celest. Mech. Dyn. Astron., 112, 353-383 (2012)
[28] Noyelles, B.: Contribution à l’étude de la rotation résonnante dans le Système Solaire. Habilitation thesis. https://arxiv.org/abs/1502.01472 (2014) (in French)
[29] Noyelles, B., Nimmo, F.: New clues on the interior of Titan from its rotation state. In: IAU Symposium, vol. 310, pp. 17-20 (2014)
[30] Noyelles, B.; Dufey, J.; Lemaitre, A., Core-mantle interactions for Mercury, Mon. Not. R. Astron. Soc., 407, 1, 479-496 (2010)
[31] Peale, SJ, Generalized Cassini’s laws, Astron. J., 74, 483 (1969)
[32] Peale, SJ, Does Mercury have a molten core?, Nature, 262, 5571, 765-766 (1976)
[33] Peale, SJ; Margot, J-L; Hauck, SA; Solomon, SC, Effect of core-mantle and tidal torques on Mercury’s spin axis orientation, Icarus, 231, 206-220 (2014)
[34] Poincaré, H., Sur la précession des corps déformables, Bull. Astron., 27, 321-357 (1910) · Zbl 1308.74043
[35] Quillen, AC; Chen, Y-Y; Noyelles, B.; Loane, S., Tilting Styx and Nix but not Uranus with a spin-precession-mean-motion resonance, Celest. Mech. Dyn. Astron., 130, 2, 11 (2018) · Zbl 1390.70062
[36] Ragazzo, C.; Ruiz, LS, Dynamics of an isolated, viscoelastic, self-gravitating body, Celest. Mech. Dyn. Astron., 122, 303-332 (2015) · Zbl 1322.70011
[37] Ragazzo, C.; Ruiz, LS, Viscoelastic tides: models for use in celestial mechanics, Celest. Mech. Dyn. Astron., 128, 19-59 (2017) · Zbl 1365.70015
[38] Smith, DE; Zuber, MT; Phillips, RJ, Gravity field and internal structure of Mercury from MESSENGER, Science, 336, 214 (2012)
[39] Stys, C.; Dumberry, M., The Cassini state of the Moon’s inner core, J. Geophys. Res. (Planets), 123, 11, 2868-2892 (2018)
[40] Tisserand, F.: Traité de mécanique céleste. Théorie de la figure des corps célestes et de leur mouvement de rotation, Gauthier-Villars et fils (Paris), chap XXVIII. Libration de la Lune. https://gallica.bnf.fr/ark:/12148/bpt6k6537806n/f464.image (1891)
[41] Touma, J.; Wisdom, J., Nonlinear core-mantle coupling, Astron. J., 122, 2, 1030-1050 (2001)
[42] Van Hoolst, T.; Dehant, V., Influence of triaxiality and second-order terms in flattenings on the rotation of terrestrial planets. I. Formalism and rotational normal modes, Phys. Earth Planet. Inter., 134, 17-33 (2002)
[43] Van Hoolst, T.; Rambaux, N.; Karatekin, Ö.; Baland, R-M, The effect of gravitational and pressure torques on Titan’s length-of-day variations, Icarus, 200, 256-264 (2009)
[44] Viswanathan, V., Fienga, A., Gastineau, M., Laskar, J.: INPOP17a planetary ephemerides scientific notes. Technical report (2017)
[45] Vokrouhlický, D.; Nesvorný, D., Tilting Jupiter (a bit) and Saturn (a lot) during planetary migration, Astrophys. J., 806, 1, 143 (2015)
[46] Ward, WR, Tidal friction and generalized Cassini’s laws in the solar system, Astron. J., 80, 64-70 (1975)
[47] Ward, WR; Canup, RM, The obliquity of Jupiter, Astrophys. J. Lett., 640, 1, L91-L94 (2006)
[48] Ward, WR; Hamilton, DP, Tilting Saturn. I. Analytic model, Astron. J., 128, 2501-2509 (2004)
[49] Williams, JG; Boggs, DH; Yoder, CF, Lunar rotational dissipation in solid body and molten core, J. Geophys. Res., 106, E11, 27933-27968 (2001)
[50] Yoder, CF; Ahrens, TJ, Astrometric and geodetic properties of Earth and the solar system, Global Earth Physics: A Handbook of Physical Constants (1995), Washington, DC: American Geophysical Union, Washington, DC
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.