×

zbMATH — the first resource for mathematics

Testing for the significance of functional covariates. (English) Zbl 1448.62207
Summary: We consider the problem of testing for the nullity of conditional expectations of Hilbert space-valued random variables. We allow for conditioning variables taking values in finite or infinite Hilbert spaces. This testing problem occurs, for instance, when checking the goodness-of-fit or the effect of some infinite-dimensional covariates in regression models for functional data. Testing the independence, between a finite dimensional variable and a functional one, is another example that could be treated in our framework. We propose a new test based on kernel smoothing. The test statistic is asymptotically standard normal under the null hypothesis provided the smoothing parameter tends to zero at a suitable rate. The one-sided test is consistent against any fixed alternative, as well as against local alternatives à la Pitman and uniformly against classes of regular alternatives approaching the null hypothesis. In particular, we show that neither the dimension of the outcome nor the dimension of the functional covariates influences the theoretical power of the test against such alternatives. Simulation experiments and a real data application using a variable-domain functional regression model illustrate the performance of the new test.
Reviewer: Reviewer (Berlin)
MSC:
62R10 Functional data analysis
62G10 Nonparametric hypothesis testing
62G20 Asymptotic properties of nonparametric inference
Software:
fda (R)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aneiros-Pérez, G.; Vieu, P., Semi-functional partial linear regression, Statist. Probab. Lett., 76, 1102-1110 (2006) · Zbl 1090.62036
[2] Chiou, J.-M.; Müller, H.-G., Diagnostics for functional regression via residual processes, Comput. Statist. Data Anal., 51, 4849-4863 (2007) · Zbl 1162.62394
[3] Chow, Y. S.; Teicher, H., (Probability Theory : Independence, Interchangeability, Martingales. Probability Theory : Independence, Interchangeability, Martingales, Springer Texts in Statistics (1997), Springer-Verlag: Springer-Verlag New York) · Zbl 0891.60002
[4] Da Prato, G., (An Introduction to Infinite-Dimensional Analysis. An Introduction to Infinite-Dimensional Analysis, Universitext (2006), Springer-Verlag: Springer-Verlag Berlin), Revised and extended from the 2001 original by Da Prato · Zbl 1109.46001
[5] de Jong, P., A central limit theorem for generalized quadratic forms, Probab. Theory Related Fields, 75, 261-277 (1987) · Zbl 0596.60022
[6] Delsol, L.; Ferraty, F.; Vieu, P., Structural test in regression on functional variables, J. Multivariate Anal., 102, 422-447 (2011) · Zbl 1207.62096
[7] Faraway, J. J., Regression analysis for a functional response, Technometrics, 39, 254-261 (1997) · Zbl 0891.62027
[8] Ferraty, F.; Laksaci, A.; Tadj, A.; Vieu, P., Kernel regression with functional response, Electron. J. Stat., 5, 159-171 (2011) · Zbl 1274.62281
[9] Ferraty, F.; Van Keilegom, I.; Vieu, P., Regression when both response and predictor are functions, J. Multivariate Anal., 109, 10-28 (2012) · Zbl 1241.62054
[10] García-Portugueś, E.; González-Manteiga, W.; Febrero-Bande, M., A goodness-of-fit test for the functional linear model with scalar response, J. Comput. Graph. Statist., 23, 761-778 (2014)
[11] Gellar, J. E.; Colantuoni, E.; Needham, D. M.; Crainiceanu, C. M., Variable-domain functional regression for modeling ICU data, J. Amer. Statist. Assoc., 109, 1425-1439 (2014)
[12] Guerre, E.; Lavergne, P., Optimal minimax rates for nonparametric specification testing in regression models, Econ. Theory, 18, 1139-1171 (2002) · Zbl 1033.62042
[13] Guerre, E.; Lavergne, P., Data-driven rate-optimal specification testing in regression models, Ann. Statist., 33, 840-870 (2005) · Zbl 1068.62055
[14] Hall, P.; Horowitz, J. L., Methodology and convergence rates for functional linear regression, Ann. Statist., 35, 70-91 (2007) · Zbl 1114.62048
[15] Harchaoui, Z.; Bach, F.; Cappe, O.; Moulines, E., Kernel-based methods for hypothesis testing: A unified view, IEEE Signal Process. Mag., 30, 87-97 (2013)
[16] Härdle, W.; Mammen, E., Comparing nonparametric versus parametric regression fits, Ann. Statist., 21, 1926-1947 (1993) · Zbl 0795.62036
[17] Horowitz, J. L.; Spokoiny, V. G., An adaptive, rate-optimal test of a parametric mean-regression model against a nonparametric alternative, Econometrica, 69, 599-631 (2001) · Zbl 1017.62012
[18] Horváth, L.; Kokoszka, P., (Inference for Functional Data with Applications. Inference for Functional Data with Applications, Springer Ser. Statist. (2012), Springer: Springer New York) · Zbl 1279.62017
[19] Ivanescu, A. E.; Staicu, A.-M.; Scheipl, F.; Greven, S., Penalized function-on-function regression, Comput. Statist., 30, 539-568 (2015) · Zbl 1317.65037
[20] Kokoszka, P.; Maslova, I.; Sojka, J.; Zhu, L., Testing for lack of dependence in the functional linear model, Canad. J. Statist., 36, 207-222 (2008) · Zbl 1144.62316
[21] Lavergne, P.; Maistre, S.; Patilea, V., A significance test for covariates in nonparametric regression, Electron. J. Statist., 9, 643-678 (2015) · Zbl 1309.62076
[22] Ling, N.; Vieu, P., Nonparametric modelling for functional data: selected survey and tracks for future, Statistics, 52, 934-949 (2018) · Zbl 1411.62084
[23] Mammen, E., Bootstrap and wild bootstrap for high-dimensional linear models, Ann. Statist., 21, 255-285 (1993) · Zbl 0771.62032
[24] Needham, D. M.; Dennison, C. R.; Dowdy, D. W.; Mendez-Tellez, P. A.; Ciesla, N.; Desai, S. V.; Sevransky, J.; Shanholtz, C.; Scharfstein, D.; Herridge, M. S.; Pronovost, P. J., Study protocol: The improving care of acute lung injury patients (icap) study, Crit. Care, 10 (2005), R9
[25] Patilea, V.; Sanchez-Sellero, C.; Saumard, M., Projection-based nonparametric goodness-of-fit testing with functional covariates (2012), arXiv:1205.5578 [math.ST]
[26] Patilea, V.; Sanchez-Sellero, C.; Saumard, M., Testing the predictor effect on a functional response, J. Amer. Statist. Assoc., 111, 1684-1695 (2016)
[27] Ramsay, J. O.; Silverman, B. W., (Functional Data Analysis. Functional Data Analysis, Springer Ser. Statist. (2005), Springer: Springer New York) · Zbl 1079.62006
[28] Valderrama, M. J.; Ocaña, F. A.; Aguilera, A. M.; Ocaña-Peinado, F. M., Forecasting pollen concentration by a two-step functional model, Biometrics, 66, 578-585 (2010) · Zbl 1192.62254
[29] van der Vaart, A. W., (Asymptotic Statistics. Asymptotic Statistics, Camb. Ser. Stat. Probab. Math., vol. 3 (1998), Cambridge University Press: Cambridge University Press Cambridge) · Zbl 0910.62001
[30] Wu, Y.; Fan, J.; Müller, H.-G., Varying-coefficient functional linear regression, Bernoulli, 16, 730-758 (2010) · Zbl 1220.62046
[31] Yao, F.; Müller, H.-G.; Wang, J.-L., Functional linear regression analysis for longitudinal data, Ann. Statist., 33, 2873-2903 (2005) · Zbl 1084.62096
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.