×

Gradient flows and evolution variational inequalities in metric spaces. I: structural properties. (English) Zbl 1448.49015

The authors provide the analysis of the class of gradient flows in a metric space that can be characterized by evolution variational inequalities. This first paper in the series deals with contraction, regularity, asymptotic expansion, precise energy identity, stability and asymptotic behavior of solutions.

MSC:

49J40 Variational inequalities
47J35 Nonlinear evolution equations
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Alexandrov, A. D., A Theorem on Triangles in a Metric Space and Some of Its Applications, Trudy Mat. Inst. Steklov, vol. 38, 5-23 (1951), Izdat. Akad. Nauk SSSR: Izdat. Akad. Nauk SSSR Moscow
[2] Ambrosio, L., Minimizing movements, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5), 19, 191-246 (1995) · Zbl 0957.49029
[3] Ambrosio, L.; Gigli, N., A user’s guide to optimal transport, (Modelling and Optimisation of Flows on Networks. Modelling and Optimisation of Flows on Networks, Lecture Notes in Math., vol. 2062 (2013), Springer: Springer Heidelberg), 1-155
[4] Ambrosio, L.; Savaré, G., Gradient flows of probability measures, (Handbook of Evolution Equations (III) (2006), Elsevier)
[5] Ambrosio, L.; Gigli, N.; Savaré, G., Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH Zürich (2008), Birkhäuser Verlag: Birkhäuser Verlag Basel · Zbl 1145.35001
[6] Ambrosio, L.; Savaré, G.; Zambotti, L., Existence and stability for Fokker-Planck equations with log-concave reference measure, Probab. Theory Related Fields, 145, 517-564 (2009) · Zbl 1235.60105
[7] Ambrosio, L.; Gigli, N.; Savaré, G., Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below, Invent. Math., 195, 289-391 (2014) · Zbl 1312.53056
[8] Ambrosio, L.; Gigli, N.; Savaré, G., Metric measure spaces with Riemannian Ricci curvature bounded from below, Duke Math. J., 163, 1405-1490 (2014) · Zbl 1304.35310
[9] Ambrosio, L.; Gigli, N.; Savaré, G., Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds, Ann. Probab., 43, 339-404 (2015) · Zbl 1307.49044
[10] Ambrosio, L.; Erbar, M.; Savaré, G., Optimal transport, Cheeger energies and contractivity of dynamic transport distances in extended spaces, Nonlinear Anal., 137, 77-134 (2016) · Zbl 1337.49075
[11] Ambrosio, L.; Gigli, N.; Savaré, G., Diffusion, optimal transport and Ricci curvature for metric measure spaces, Eur. Math. Soc. Newsl., 19-28 (2017) · Zbl 1429.58041
[12] Ambrosio, L.; Mondino, A.; Savaré, G., Nonlinear diffusion equations and curvature conditions in metric measure spaces (2017), Mem. Amer. Math. Soc., to appear, preprint
[13] Bačák, M., Convex Analysis and Optimization in Hadamard Spaces, De Gruyter Series in Nonlinear Analysis and Applications, vol. 22 (2014), De Gruyter: De Gruyter Berlin · Zbl 1299.90001
[14] Baiocchi, C., Discretization of evolution variational inequalities, (Colombini, F.; Marino, A.; Modica, L.; Spagnolo, S., Partial Differential Equations and the Calculus of Variations, Vol. I (1989), Birkhäuser Boston: Birkhäuser Boston Boston, MA), 59-92 · Zbl 0677.65068
[15] Barbu, V., Nonlinear Semigroups and Differential Equations in Banach Spaces (1976), Editura Academiei Republicii Socialiste România: Editura Academiei Republicii Socialiste România Bucharest, translated from the Romanian · Zbl 0328.47035
[16] Bénilan, P., Solutions intégrales d’équations d’évolution dans un espace de Banach, C. R. Acad. Sci. Paris Sér. A-B, 274, A47-A50 (1972) · Zbl 0246.47068
[17] Blanchet, A.; Carlen, E. A.; Carrillo, J. A., Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller-Segel model, J. Funct. Anal., 262, 2142-2230 (2012) · Zbl 1237.35155
[18] Brézis, H., Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations, (Contribution to Nonlinear Functional Analysis, Proc. Sympos. Math. Res. Center, Univ. Wisconsin, Madison (1971)), 101-156 · Zbl 0278.47033
[19] Brézis, H., Propriétés régularisantes de certains semi-groupes non linéaires, Israel J. Math., 9, 513-534 (1971) · Zbl 0213.14903
[20] Brézis, H., Problèmes unilatéraux, J. Math. Pures Appl. (9), 51, 1-168 (1972) · Zbl 0237.35001
[21] Brézis, H., Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Mathematics Studies, vol. 5 (1973), North-Holland Publishing Co.: North-Holland Publishing Co. Amsterdam, Notas de Matemática, vol. 50 · Zbl 0252.47055
[22] Burago, D.; Burago, Y.; Ivanov, S., A Course in Metric Geometry, Graduate Studies in Mathematics, vol. 33 (2001), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0981.51016
[23] Burago, Y.; Gromov, M.; Perel’man, G., A. D. Aleksandrov spaces with curvatures bounded below, Uspekhi Mat. Nauk, 47, 3-51 (1992), 222 · Zbl 0802.53018
[24] Carrillo, J. A.; McCann, R. J.; Villani, C., Contractions in the 2-Wasserstein length space and thermalization of granular media, Arch. Ration. Mech. Anal., 179, 217-263 (2006) · Zbl 1082.76105
[25] Chizat, L.; Di Marino, S., A tumor growth model of Hele-Shaw type as a gradient flow (2017), preprint
[26] Clément, P.; Desch, W., A Crandall-Liggett approach to gradient flows in metric spaces, J. Abstr. Differ. Equ. Appl., 1, 46-60 (2010) · Zbl 1215.47040
[27] Clément, P.; Desch, W., Some remarks on the equivalence between metric formulations of gradient flows, Boll. Unione Mat. Ital. (9), 3, 583-588 (2010) · Zbl 1217.49009
[28] Colli, P., On some doubly nonlinear evolution equations in Banach spaces, Jpn. J. Ind. Appl. Math., 9, 181-203 (1992) · Zbl 0757.34051
[29] Cordero-Erausquin, D.; McCann, R. J.; Schmuckenschläger, M., A Riemannian interpolation inequality à la Borell, Brascamp and Lieb, Invent. Math., 146, 219-257 (2001) · Zbl 1026.58018
[30] Cordero-Erausquin, D.; McCann, R. J.; Schmuckenschläger, M., Prékopa-Leindler type inequalities on Riemannian manifolds, Jacobi fields, and optimal transport, Ann. Fac. Sci. Toulouse Math. (6), 15, 613-635 (2006) · Zbl 1125.58007
[31] Craig, K., The exponential formula for the Wasserstein metric, ESAIM Control Optim. Calc. Var., 22, 169-187 (2016) · Zbl 1338.47071
[32] Crandall, M. G.; Liggett, T. M., Generation of semi-groups of nonlinear transformations on general Banach spaces, Amer. J. Math., 93, 265-298 (1971) · Zbl 0226.47038
[33] Dal Maso, G., An Introduction to Γ-Convergence, Progress in Nonlinear Differential Equations and Their Applications, vol. 8 (1993), Birkhäuser: Birkhäuser Boston · Zbl 0816.49001
[34] Daneri, S.; Savaré, G., Eulerian calculus for the displacement convexity in the Wasserstein distance, SIAM J. Math. Anal., 40, 1104-1122 (2008) · Zbl 1166.58011
[35] Daneri, S.; Savaré, G., Lecture notes on gradient flows and optimal transport, (Ollivier, Y.; Pajot, H.; Villani, C., Optimal Transportation. Optimal Transportation, London Math. Soc. Lecture Note Ser., vol. 413 (2014), Cambridge Univ. Press: Cambridge Univ. Press Cambridge), 100-144 · Zbl 1333.49001
[36] De Giorgi, E., New problems on minimizing movements, (Baiocchi, C.; Lions, J. L., Boundary Value Problems for PDE and Applications (1993), Masson), 81-98 · Zbl 0851.35052
[37] De Giorgi, E.; Marino, A.; Tosques, M., Problems of evolution in metric spaces and maximal decreasing curve, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 68, 180-187 (1980) · Zbl 0465.47041
[38] Degiovanni, M.; Marino, A.; Tosques, M., Evolution equations with lack of convexity, Nonlinear Anal., 9, 1401-1443 (1985) · Zbl 0545.46029
[39] Ekeland, I., On the variational principle, J. Math. Anal. Appl., 47, 324-353 (1974) · Zbl 0286.49015
[40] Ekeland, I., Nonconvex minimization problems, Bull. Amer. Math. Soc. (N.S.), 1, 443-474 (1979) · Zbl 0441.49011
[41] Erbar, M., The heat equation on manifolds as a gradient flow in the Wasserstein space, Ann. Inst. Henri Poincaré Probab. Stat., 46, 1-23 (2010) · Zbl 1215.35016
[42] Erbar, M., Gradient flows of the entropy for jump processes, Ann. Inst. Henri Poincaré Probab. Stat., 50, 920-945 (2014) · Zbl 1311.60091
[43] Erbar, M.; Huesmann, M., Curvature bounds for configuration spaces, Calc. Var. Partial Differential Equations, 54, 397-430 (2015) · Zbl 1335.53047
[44] Erbar, M.; Maas, J., Ricci curvature of finite Markov chains via convexity of the entropy, Arch. Ration. Mech. Anal., 206, 997-1038 (2012) · Zbl 1256.53028
[45] Erbar, M.; Kuwada, K.; Sturm, K.-T., On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces, Invent. Math., 201, 993-1071 (2015) · Zbl 1329.53059
[46] Gál, I. S., On the fundamental theorems of the calculus, Trans. Amer. Math. Soc., 86, 309-320 (1957) · Zbl 0079.28003
[47] Gigli, N.; Kuwada, K.; Ohta, S., Heat flow on Alexandrov spaces, Comm. Pure Appl. Math., 66, 307-331 (2013) · Zbl 1267.58014
[48] Glitzky, A.; Mielke, A., A gradient structure for systems coupling reaction-diffusion effects in bulk and interfaces, Z. Angew. Math. Phys., 64, 29-52 (2013) · Zbl 1270.35256
[49] Gromov, M., Metric Structures for Riemannian and Non-Riemannian Spaces, Progress in Mathematics, vol. 152 (1999), Birkhäuser Boston, Inc.: Birkhäuser Boston, Inc. Boston, MA, Based on the 1981 French original [MR0682063 (85e:53051)], with appendices by M. Katz, P. Pansu and S. Semmes, Translated from the French by Sean Michael Bates · Zbl 0953.53002
[50] Hairer, E.; Nørsett, S. P.; Wanner, G., Solving Ordinary Differential Equations. I, Springer Series in Computational Mathematics, vol. 8 (1993), Springer-Verlag: Springer-Verlag Berlin, Nonstiff problems · Zbl 0789.65048
[51] Jordan, R.; Kinderlehrer, D.; Otto, F., The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29, 1-17 (1998), (electronic) · Zbl 0915.35120
[52] Jost, J., Nonlinear Dirichlet forms, (New Directions in Dirichlet Forms. New Directions in Dirichlet Forms, AMS/IP Stud. Adv. Math., vol. 8 (1998), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 1-47 · Zbl 0914.31006
[53] Kinderlehrer, D.; Monsaingeon, L.; Xu, X., A Wasserstein gradient flow approach to Poisson-Nernst-Planck equations, ESAIM Control Optim. Calc. Var., 23, 137-164 (2017) · Zbl 1372.35167
[54] Kondratyev, S.; Monsaingeon, L.; Vorotnikov, D., A new optimal transport distance on the space of finite Radon measures, Adv. Differential Equations, 21, 1117-1164 (2016) · Zbl 1375.49062
[55] Laschos, V.; Mielke, A., Geometric properties of cones with applications on the Hellinger-Kantorovich space, and a new distance on the space of probability measures, J. Funct. Anal., 276, 11, 3529-3576 (2019), preprint · Zbl 1422.60009
[56] Liero, M.; Mielke, A., Gradient structures and geodesic convexity for reaction-diffusion systems, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 371, 1-28 (2013) · Zbl 1292.35149
[57] Liero, M.; Mielke, A.; Savaré, G., Optimal entropy-transport problems and a new Hellinger-Kantorovich distance between positive measures, Invent. Math., 211, 969-1117 (2018) · Zbl 1412.49089
[58] Lott, J.; Villani, C., Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. (2), 169, 903-991 (2009) · Zbl 1178.53038
[59] Lytchak, A., Open map theorem for metric spaces, Algebra i Analiz, 17, 139-159 (2005) · Zbl 1152.53033
[60] Maas, J., Gradient flows of the entropy for finite Markov chains, J. Funct. Anal., 261, 2250-2292 (2011) · Zbl 1237.60058
[61] Marino, A.; Saccon, C.; Tosques, M., Curves of maximal slope and parabolic variational inequalities on nonconvex constraints, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), 16, 281-330 (1989) · Zbl 0699.49015
[62] Matthes, D.; McCann, R. J.; Savaré, G., A family of nonlinear fourth order equations of gradient flow type, Comm. Partial Differential Equations, 34, 1352-1397 (2009) · Zbl 1187.35131
[63] Mayer, U. F., Gradient flows on nonpositively curved metric spaces and harmonic maps, Comm. Anal. Geom., 6, 199-253 (1998) · Zbl 0914.58008
[64] McCann, R. J., A convexity principle for interacting gases, Adv. Math., 128, 153-179 (1997) · Zbl 0901.49012
[65] Mielke, A., A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems, Nonlinearity, 24, 1329-1346 (2011) · Zbl 1227.35161
[66] Mielke, A., Geodesic convexity of the relative entropy in reversible Markov chains, Calc. Var. Partial Differential Equations, 48, 1-31 (2013) · Zbl 1282.60072
[67] Mielke, A.; Rossi, R.; Savaré, G., Nonsmooth analysis of doubly nonlinear evolution equations, Calc. Var. Partial Differential Equations, 46, 253-310 (2013) · Zbl 1270.35289
[68] Mielke, A.; Ortner, C.; Şengül, Y., An approach to nonlinear viscoelasticity via metric gradient flows, SIAM J. Math. Anal., 46, 1317-1347 (2014) · Zbl 1317.74024
[69] M. Muratori, G. Savaré, Gradient flows and Evolution Variational Inequalities in metric spaces. II: Variational convergence, in preparation. · Zbl 1448.49015
[70] M. Muratori, G. Savaré, Gradient flows and Evolution Variational Inequalities in metric spaces. III: Generation results, in preparation. · Zbl 1448.49015
[71] Nochetto, R. H.; Savaré, G.; Verdi, C., A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations, Comm. Pure Appl. Math., 53, 525-589 (2000) · Zbl 1021.65047
[72] Ohta, S.-i., Gradient flows on Wasserstein spaces over compact Alexandrov spaces, Amer. J. Math., 131, 475-516 (2009) · Zbl 1169.53053
[73] Ohta, S.-i.; Pálfia, M., Gradient flows and a Trotter-Kato formula of semi-convex functions on \(CAT(1)\)-spaces, Amer. J. Math., 139, 937-965 (2017) · Zbl 1372.49027
[74] Ohta, S.-i.; Sturm, K.-T., Non-contraction of heat flow on Minkowski spaces, Arch. Ration. Mech. Anal., 204, 917-944 (2012) · Zbl 1257.53098
[75] Otto, F., The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial Differential Equations, 26, 101-174 (2001) · Zbl 0984.35089
[76] Otto, F.; Villani, C., Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal., 173, 361-400 (2000) · Zbl 0985.58019
[77] Perelman, G.; Petrunin, A., Quasigeodesics and gradient curves in Alexandrov spaces, Unpublished preprint, available online at:
[78] Petrunin, A., Semiconcave functions in Alexandrov’s geometry, (Surveys in Differential Geometry. Surveys in Differential Geometry, Surv. Differ. Geom., vol. 11 (2007), Int. Press: Int. Press Somerville, MA), 137-201 · Zbl 1166.53001
[79] Plaut, C., Metric spaces of curvature ≥k, (Handbook of Geometric Topology (2002), North-Holland: North-Holland Amsterdam), 819-898 · Zbl 1011.57002
[80] Rossi, R.; Savaré, G., Gradient flows of non convex functionals in Hilbert spaces and applications, ESAIM Control Optim. Calc. Var., 12, 564-614 (2006), (electronic) · Zbl 1116.34048
[81] Santambrogio, F., {Euclidean, metric, and Wasserstein} gradient flows: an overview, Bull. Math. Sci., 7, 87-154 (2017) · Zbl 1369.34084
[82] Savaré, G., Gradient flows and diffusion semigroups in metric spaces under lower curvature bounds, C. R. Math. Acad. Sci. Paris, 345, 151-154 (2007) · Zbl 1125.53064
[83] Showalter, R. E., Monotone Operators in Banach Space and Nonlinear Partial Differential Equations (1997), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0870.35004
[84] Sturm, K.-T., Metric spaces of lower bounded curvature, Expo. Math., 17, 35-47 (1999) · Zbl 0983.53025
[85] Sturm, K.-T., Convex functionals of probability measures and nonlinear diffusions on manifolds, J. Math. Pures Appl., 9, 84, 149-168 (2005) · Zbl 1259.49074
[86] Sturm, K.-T., On the geometry of metric measure spaces. I, Acta Math., 196, 65-131 (2006) · Zbl 1105.53035
[87] Sturm, K.-T., On the geometry of metric measure spaces. II, Acta Math., 196, 133-177 (2006) · Zbl 1106.53032
[88] Sturm, K.-T., Gradient flows for semiconvex functions on metric measure spaces – existence, uniqueness, and Lipschitz continuity, Proc. Amer. Math. Soc., 146, 3985-3994 (2018) · Zbl 1395.49038
[89] Villani, C., Optimal Transport. Old and New, Grundlehren der Mathematischen Wissenschaften, vol. 338 (2009), Springer-Verlag: Springer-Verlag Berlin · Zbl 1156.53003
[90] von Renesse, M.-K.; Tölle, J. M., On an EVI curve characterization of Hilbert spaces, J. Math. Anal. Appl., 385, 589-598 (2012) · Zbl 1243.49012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.