A minimal-variable symplectic method for isospectral flows. (English) Zbl 1448.37107

A new minimal-variable second-order implicit midpoint method is introduced for general isospectral flows and isospectral Lie-Poisson systems. The technique avoids computationally heavy transformations and it belongs to the class of Isospectral Symplectic Rung-Kutta (IsoSyRK) methods (see [K. Modin and M. Viviani, Found. Compute. Math. 20, No. 4, 889–921 (2020; Zbl 1450.37073)]).
The method is here derived reducing the number of unknowns up to minimality and revealing an intrinsic relation between the implicit midpoint method and the Cayley transform. When the isospectral flow is Lie-Poisson, it preserves the coadjoint orbits. The method is compared numerically with the spherical midpoint method, which is another minimal-variable Lie-Poisson integrator on \(\mathbb{R}^3\). Structure-preserving properties of the isospectral minimal midpoint method are stated for the generalized rigid body, the Brockett flow, Lie-Poisson systems on \((\mathbb{R}^3,\mathsf{x})\) and on \(\mathrm{sl}(2,\mathbb{R})\). The Casimir functions are conserved up to round-off errors, and for isospectral Hamilton flows, near conservation of the Hamiltonians are shown. Furthermore, the authors present the isospectral minimal midpoint on \(\mathrm{sl}(2,\mathbb{R})\), applying it to the point vortex equations on the hyperbolic plane.


37M15 Discretization methods and integrators (symplectic, variational, geometric, etc.) for dynamical systems
37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
37J70 Completely integrable discrete dynamical systems
65P10 Numerical methods for Hamiltonian systems including symplectic integrators
53D20 Momentum maps; symplectic reduction
70H06 Completely integrable systems and methods of integration for problems in Hamiltonian and Lagrangian mechanics


Zbl 1450.37073
Full Text: DOI arXiv


[1] Arnold, V.I., Khesin, B.A.: Topological Methods in Hydrodynamics. Applied Mathematical Sciences, vol. 125. Springer, New York (1998) · Zbl 0902.76001
[2] Beale, JT; Majda, A., Vortex methods. ii: higher order accuracy in two and three dimensions, Math. Comput., 39, 159, 29-52 (1982) · Zbl 0488.76025
[3] Brockett, RW, Dynamical systems that sort lists, diagonalize matrices, and solve linear programming problems, Linear Algebra Appl., 146, 79-91 (1991) · Zbl 0719.90045
[4] Calvo, M.P., Iserles, A., Zanna, A.: Numerical solution of isospectral flows. Math. Comput., 66:1461-1486, 10 (1997). 10.1090/S0025-5718-97-00902-2 · Zbl 0907.65067
[5] Chan, CH; Czubak, M., Non-uniqueness of the Leray-Hopf solutions in the hyperbolic setting, Dyn Partial Differ. Equ., 10, 1, 43-77 (2013) · Zbl 1307.35189
[6] de Diego, D.M.: Lie-Poisson integrators. In: Rev. de la Academia Canaria de Ciencias, vol. XXX, pp. 9-30 (2018)
[7] Hairer, E.; Lubich, C.; Wanner, G., Geometric Numerical Integration (2006), Berlin: Springer, Berlin
[8] Hwang, S.; Kim, S-C, Point vortices on hyperbolic sphere, J. Geom. Phys., 59, 475-488 (2009) · Zbl 1166.76011
[9] Hwang, S., Kim, S.-C.: Relative equilibria of point vortices on the hyperbolic sphere. J. Geom. Phys. 54:063101/1-15 (2013)
[10] Iserles, A.; Munthe-Kaas, H.; Nørsett, S.; Zanna, A., Lie-group methods, Acta Numerica, 9, 215-365 (2000) · Zbl 1064.65147
[11] Khesin, B., Misiołek, G.: Euler and Navier-Stokes equations on the hyperbolic plane. Proc. Natl. Acad. Sci 109(45):18324-18326 (2012). ISSN 0027-8424. 10.1073/pnas.1210350109
[12] Knapp, A.W.: Lie groups beyond an introduction. Birkhäuser (1996). ISBN 978-1-4757-2453-0 · Zbl 0862.22006
[13] Laurent-Polz, F.; Montaldi, J.; Roberts, M., Point vortices on the sphere: stability of symmetric relative equilibria, J. Geom. Mech., 3, 4, 439-486 (2011) · Zbl 1248.70020
[14] Manakov, SV, Note on the integration of the Euler’s equations of the dynamics of a n-dimensional rigid body, Funct. Anal. Appl., 10, 328-329 (1976) · Zbl 0358.70004
[15] Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry, volume vol. 17 of Texts in Applied Mathematics. Springer, New York (1999). ISBN 978-0-387-21792-5 · Zbl 0933.70003
[16] McLachlan, R.; Modin, K.; Verdier, O., Symplectic integrators for spin systems, Phys. Rev. E, 89, 061301 (2014)
[17] McLachlan, R.; Modin, K.; Verdier, O., A minimal-variable symplectic integrator on spheres, Math. Comput., 86, 307, 2325-2344 (2017) · Zbl 1364.37166
[18] Modin, K., Viviani, M.: Lie-Poisson methods for isospectral flows. Foundations of Computational Mathematics (2019). ISSN 1615-3383. 10.1007/s10208-019-09428-w
[19] Montaldi, J.; Nava-Gaxiola, C., Point vortices on the hyperbolic plane, J. Math. Phys., 55, 03 (2014) · Zbl 1366.37089
[20] Munthe-Kaas, H., Lie-Butcher theory for Runge-Kutta methods, BIT Numer. Math., 35, 06 (1996) · Zbl 0841.65059
[21] Poincaré, H., Sur une forme nouvelle des équations de la mécanique, C. R. Acad. Sci., 132, 369-371 (1901) · JFM 32.0715.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.