×

Optical soliton perturbation with Kudryashov’s equation by semi-inverse variational principle. (English) Zbl 1448.35082

Summary: The semi-inverse variational principle retrieved bright 1-soliton solution to the perturbed Kudryashov’s equation. The perturbation terms appear with maximum intensity and additionally higher order dispersion effects are included. The parameter constraints for the solitons to exist are also enumerated.

MSC:

35C08 Soliton solutions
35Q51 Soliton equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Arnous, A. H.; Biswas, A.; Ekici, M.; Alzahrani, A. K.; Belic, M. R., Optical solitons and conservation laws of Kudryashov’s equation with improved modified extended tanh-function, Optik (2020), in press
[2] Arshed, S.; Arif, A., Soliton solutions of higher-order nonlinear Schrödinger equation (NLSE) and nonlinear Kudryashov’s equation, Optik, 209, Article 164588 pp. (2020)
[3] Asma, M.; Othman, W. A.M.; Wong, B. R.; Biswas, A., Optical soliton perturbation with quadratic-cubic nonlinearity by semi-inverse variational principle, Proc. Rom. Acad., Ser. A, 18, 4, 331-336 (2017)
[4] Astrakharchik, G. E.; Malomed, B. A., Dynamics of one-dimensional quantum droplets, Phys. Rev. A, 98, 1, Article 013631 pp. (2018)
[5] Biswas, A.; Vega-Guzmán, J.; Ekici, M.; Zhou, Q.; Triki, H.; Alshomrani, A. S.; Belic, M. R., Optical solitons and conservation laws of Kudryashov’s equation using undetermined coefficients, Optik, 202, Article 163417 pp. (2020)
[6] Biswas, A.; Ekici, M.; Sonmezoglu, A.; Alshomrani, A. S.; Belic, M. R., Optical solitons with Kudryashov’s equation by extended trial function, Optik, 202, Article 163290 pp. (2020)
[7] He, J-H.; Sun, C., A variational principle for a thin film equation, J. Math. Chem., 57, 2075-2081 (2019) · Zbl 1462.76021
[8] He, J-H., Variational principle and periodic solution of the Kundu-Mukherjee-Naskar equation, Results Phys., 17, Article 103031 pp. (2020)
[9] Kudryashov, N. A., A generalized model for description of propagation pulses in optical fiber, Optik, 189, 42-52 (2019)
[10] Qiu, Y.; Malomed, B. A.; Mihalache, D.; Zhu, X.; Zhang, L.; He, Yingji, Soliton dynamics in a fractional complex Ginzburg-Landau model, Chaos Solitons Fractals, 131, Article 109471 pp. (2020) · Zbl 1495.35200
[11] Kohl, R. W.; Biswas, A.; Zhou, Q.; Ekici, M.; Alzahrani, A. K.; Belic, M. R., Optical soliton perturbation with polynomial and triple-power laws of refractive index by semi-inverse variational principle, Chaos Solitons Fractals, 135, Article 109765 pp. (2020) · Zbl 1489.35268
[12] Li, X-W.; Li, Y.; He, J-H., On the semi-inverse method and variational principle, Therm. Sci., 17, 5, 1565-1568 (2013)
[13] Libarir, K.; Zerarka, A., A semi-inverse variational method for generating the bound state energy eigenvalues in a quantum system: the Dirac Coulomb type-equation, J. Mod. Opt., 65, 8, 987-993 (2018)
[14] Liu, W. Y.; Yu, Y. J.; Chen, L. D., Variational principles for Ginzburg-Landau equation by He’s semi-inverse method, Chaos Solitons Fractals, 33, 5, 1801-1803 (2007) · Zbl 1145.35459
[15] Qiu, Y.; Malomed, B. A.; Mihalache, D.; Zhu, X.; Peng, J.; He, Y., Generation of stable multi-vortex clusters in a dissipative medium with anti-cubic nonlinearity, Phys. Lett. A, 383, 22, 2579-2583 (2019) · Zbl 1478.78063
[16] Tao, Z. L., Solitary solutions of the Boiti-Leon-Manna-Pempinelli equation using He’s variational method, Z. Naturforsch. A, 63, 634-636 (2008)
[17] Tao, Z. L., Solving the breaking soliton equation by He’s variational method, Comput. Math. Appl., 58, 11-12, 2395-2397 (2009) · Zbl 1189.65260
[18] Yan, W.; Liu, Q.; Zhu, C. M.; Zhao, Y.; Shi, Y., Semi-inverse method to the Klein-Gordon equation with quadratic nonlinearity, Appl. Comput. Electromagn. Soc. J., 33, 8, 842-846 (2018)
[19] Zhang, J.; Yu, J.-Y.; Pan, N., Variational principles for nonlinear fiber optics, Chaos Solitons Fractals, 24, 309-311 (2005) · Zbl 1135.78330
[20] Zayed, E. M.E.; Shohib, R. M.A.; Biswas, A.; Ekici, M.; Alzahrani, A. K.; Belic, M. R., Optical solitons and other solutions to Kudryashov’s equation with three innovative integration norms, Optik, 211, Article 164431 pp. (2020)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.