×

Steady states and outbreaks of two-phase nonlinear age-structured model of population dynamics with discrete time delay. (English) Zbl 1447.92323

Summary: In this paper we study the nonlinear age-structured model of a polycyclic two-phase population dynamics including delayed effect of population density growth on the mortality. Both phases are modelled as a system of initial boundary values problem for semi-linear transport equation with delay and initial problem for nonlinear delay ODE. The obtained system is studied both theoretically and numerically. Three different regimes of population dynamics for asymptotically stable states of autonomous systems are obtained in numerical experiments for the different initial values of population density. The quasi-periodical travelling wave solutions are studied numerically for the autonomous system with the different values of time delays and for the system with oscillating death rate and birth modulus. In both cases it is observed three types of travelling wave solutions: harmonic oscillations, pulse sequence and single pulse.

MSC:

92D25 Population dynamics (general)
34K20 Stability theory of functional-differential equations
35C07 Traveling wave solutions
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] K.C. Abbott and G. Dwyer, Food limitation and insect outbreaks: Complex dynamics in plant-herbivore models, J. Anim. Ecol. 76 (2007), pp. 1004-1014. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[2] L.M. Abia, O. Angulo, and J.C. Lopez-Marcos, Age-structured population models and their numerical solution, Ecol. Modell. 188(1) (2005), pp. 112-136. [Crossref], [Web of Science ®], [Google Scholar]
[3] V.V. Akimenko, Asymptotically stable states of non-linear age-structured monocyclic cell population model I. Travelling wave solution, Math. Comput. Simul. (2015). doi: 10.1016/j.matcom.2015.06.004. [Crossref], [Web of Science ®], [Google Scholar]
[4] V.V. Akimenko, Asymptotically stable states of non-linear age-structured monocyclic cell population model II. Numerical simulation, Math. Comput. Simul. (2015). doi: 10.1016/j.matcom.2015.06.003. [Crossref], [Web of Science ®], [Google Scholar]
[5] V.V. Akimenko and Yu.V. Zahorodnii, Modelling of dynamics of monocycle cell aggregation, Cybern. Syst. Anal. 47(1) (2011), pp. 29-43. [Crossref], [Google Scholar] · Zbl 1300.92034
[6] V.V. Akimenko and Yu.V. Zahorodnii, Analytical and numerical solutions for the age-structured cell aggregation dynamics model, Cybern. Syst. Anal. 50(4) (2014), pp. 578-593. [Crossref], [Google Scholar] · Zbl 1333.92023
[7] V.V. Akimenko, Yu.V. Zahorodnii, and A.L. Boyko, Identification of parameters of evolutionary model of monocyclic cell aggregation with the hop plants example, Comput. Math. Appl. 66(9) (2013), pp. 1547-1553. [Crossref], [Web of Science ®], [Google Scholar] · Zbl 1381.92008
[8] V.V. Akimenko, Yu.V. Zahorodnii, and V.V. Romanenko, The optimum control problem of monocycle biological cell aggregation, J. Autom. Inform. Sci. 42(9) (2010), pp. 42-52. [Crossref], [Web of Science ®], [Google Scholar]
[9] M. Amaku, F.A.B. Coutinho, R.S. Azevedo, M.N. Burattini, L.F. Lopez, and E. Massad, Vaccination against rubella: Analysis of the temporal evolution of the age-dependent force of infection and the effects of different contact patterns, Phys. Rev. E 67(5) (2003), pp. 51907-51917. [Crossref], [Web of Science ®], [Google Scholar]
[10] O. Angulo, J.C. López-Marcos, and M.A. López-Marcos, Analysis of an efficient integrator for a size-structured population model with a dynamical resource, Comput. Math. Appl. 68(9) (2014), pp. 941-961. [Crossref], [Web of Science ®], [Google Scholar] · Zbl 1362.92058
[11] O. Arino, E. Sánchez, and G. F. Webb, Necessary and sufficient conditions for asynchronous exponential growth in age structured cell populations with quiescence, J. Math. Anal. Appl. 215(2) (1997), pp. 499-513. [Crossref], [Web of Science ®], [Google Scholar] · Zbl 0886.92020
[12] R. Axelrod, D.E. Axelrod, and K.J. Pienta, Evolution of cooperation among tumour cells, Proc. Natl. Acad. Sci. USA 103(36) (2006), pp. 13474-13479. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[13] H.T. Banks and W.C. Thompson, A division-dependent compartmental model for computing cell numbers in CFSE-based lymphocyte proliferation assays, Math. Biosci. Eng. 9(4) (2012), pp. 699-736. [Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1259.92017
[14] F. Bekkal Brikci, J. Clairambault, B. Ribba, and B. Perthame, An age-and-cyclin-structured cell population model for healthy and tumoral tissues, J. Math. Biol. 57(1) (2008), pp. 91-110. [Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1148.92014
[15] A.A. Berryman, The theory and classification of outbreaks, in Insect Outbreaks, P. Barbosa and J.C. Schultz, eds., Academic Press, New York, 1987, pp. 3-30. [Crossref], [Google Scholar]
[16] F. Billy, J. Clairambault, F. Delaunay, C. Feillet, and N. Robert, Age-structured individuals population model to study the influence of growth factors on species cycle dynamics, Math. Biosci. Eng. 10(1) (2013), pp. 1-17. [Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1259.92018
[17] F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Springer, New York, 2012. [Crossref], [Google Scholar] · Zbl 1302.92001
[18] W.-L. Chan and B.-Z. Guo, Global behaviour of age-dependent logistic population models, J. Math. Biol. 28(3) (1990), pp. 225-235. [Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 0727.92020
[19] S. Cisse, S. Ghaout, A. Mazih, H. Jourdan-Pineau, K.O. Maeno, and C. Piou, Characterizing phase-related differences in behavior of Schistocerca gregaria with spatial distribution analysis, Entomol. Exp. Appl. 156 (2015), pp. 128-135. [Crossref], [Web of Science ®], [Google Scholar]
[20] K. Deng, Asymptotic behavior for a cellular replication and maturation model, J. Math. Anal. Appl. 360 (2009), pp. 727-736. [Crossref], [Web of Science ®], [Google Scholar] · Zbl 1173.92009
[21] O. Diekmann, S.A. van Gils, S.M. Verduyn Lunel, and H.-O. Walther, Delay Equations. Functional-, Complex-, and Nonlinear Analysis, Springer-Verlag, New York, 1995. [Google Scholar] · Zbl 0826.34002
[22] O. Diekmann, M. Gyllenberg, H. Huang, M. Kirkilionis, J.A.J. Metz, and H.R. Thieme, On the formulation and analysis of general deterministic structured population models. II. Nonlinear theory, J. Math. Biol. 43 (2001), pp. 157-189. [Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1028.92019
[23] O. Diekmann, M. Gyllenberg, J.A.J. Metz, and H.R. Thieme, On the formulation and analysis of general deterministic structured population models. I. Linear theory, J. Math. Biol. 36 (1998), pp. 349-388. [Crossref], [Web of Science ®], [Google Scholar] · Zbl 0909.92023
[24] L.E. Elsgolts and S.B. Norkin, Introduction to the Theory and Application of Differential Equations with Deviating Arguments. Mathematics in Science and Engineering, V. 105, Academic Press, New York - London, 1973. [Google Scholar] · Zbl 0287.34073
[25] P. Gabriel, S.P. Garbett, V. Quaranta, D.R. Tyson, and G.F. Webb, The contribution of age structure to cell population responses to targeted therapeutics, J. Theoret. Biol. 311(21) (2012), pp. 19-27. [Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1337.92046
[26] A. Gandolfi, M. Iannelli, and G. Marinoschi, An age-structured model of epidermis growth, Bull. Math. Biol. 62(1) (2011), pp. 111-141. [Crossref], [Web of Science ®], [Google Scholar] · Zbl 1232.92043
[27] M.E. Gurtin and R.C. MacCamy, Nonlinear age-dependent population dynamics, Arch. Ration. Mech. Anal. 54 (1974), pp. 281-300. [Crossref], [Web of Science ®], [Google Scholar] · Zbl 0286.92005
[28] M.E. Gurtin and R.C. MacCamy, Some simple models for nonlinear age-dependent population dynamics, Math. Biosci. 43(3) (1979), pp. 199-211. [Crossref], [Web of Science ®], [Google Scholar] · Zbl 0397.92025
[29] M. Gyllenberg, The size and scar distributions of the yeast Saccharomyces cervisiae, J. Math. Biol. 24(1) (1986), pp. 81-101. [Crossref], [Web of Science ®], [Google Scholar] · Zbl 0593.92016
[30] M. Gyllenberg and G.F. Webb, A nonlinear structured cell population model of tumor growth with quiescence, J. Math. Biol. 28 (1990), pp. 671-694. [Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 0744.92026
[31] J. Hasenauer, D. Schittler, and F. Allgöwer, Analysis and simulation of division- and label-structured population models, Bull. Math. Biol. 74(6) (2012), pp. 2692-2732. [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1362.92062
[32] F. Hoppensteadt, Mathematical Theory of Population: Demographics, Genetics and Epidemics, v.20 of CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1975. [Google Scholar]
[33] M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics, Giardini Editori e Stampatori in Pisa, Pisa, 1994. [Google Scholar]
[34] M. Iannelli, M. Martcheva, and F.A. Milner, Gender-Structured Population Modeling: Mathematical Methods, Numerics and Simulations, SIAM, Frontiers in applied mathematics, Philadelphia, 2005. [Google Scholar] · Zbl 1107.91076
[35] W.O. Kermack and A.G. McKendrick, Contributions to the mathematical theory of epidemics I. 1927, Bull. Math. Biol. 53(1-2) (1991), pp. 33-55. [PubMed], [Web of Science ®], [Google Scholar] · Zbl 0005.30501
[36] W.O. Kermack and A.G. McKendrick, Contributions to the mathematical theory of epidemics II. The problem of endemicity. 1932, Bull. Math. Biol. 53 (1-2) (1991), pp. 57-87. [PubMed], [Web of Science ®], [Google Scholar] · JFM 59.1190.03
[37] W.O. Kermack and A.G. McKendrick, Contributions to the mathematical theory of epidemics III. Further studies of the problem of endemicity. 1933, Bull. Math. Biol. 53(1-2) (1991), pp. 89-118. [PubMed], [Web of Science ®], [Google Scholar] · Zbl 0007.31502
[38] Y. Kuang, Delay Differential Equations With Applications in Populations Dynamics, V.191 in the series of Mathematics in Science and Engineering, Academic Press, San Diego, 1993. [Google Scholar]
[39] M. Lakshmanan and D.V. Senthilkumar, Dynamics of Nonlinear Time-Delay Systems, Springer, Berlin, 2010. [Google Scholar] · Zbl 1230.37001
[40] M.C. Mackey and R. Rudnicki, Global stability in a delayed partial differential equation describing cellular replication, J. Math. Biol. 33 (1994), pp. 89-109. [Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 0833.92014
[41] J.A.J. Metz and O. Diekmann, The Dynamics of Physiologically Structured Populations, Springer-Verlag, Berlin, Lecture Notes in Biomathematics 68, 1986. [Google Scholar] · Zbl 0614.92014
[42] G.R. Mirams, A.G. Fletcher, P.K. Maini, and H.M. Byrne, A theoretical investigation of the effect of proliferation and adhesion on monoclonal conversion in the colonic crypt, J. Theoret. Biol. 312(7) (2012), pp. 143-56. [Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1337.92049
[43] M. Mohr, M.V. Barbarossa, and Ch. Kuttler, Predator-Prey interactions, age-structures and delay equations, Math. Model. Nat. Phenom. 9(1) (2014), pp. 92-107. [Crossref], [Web of Science ®], [Google Scholar] · Zbl 1292.92017
[44] J. Muller and Ch. Kuttler, Methods and Models in Mathematical Biology, Deterministic and Stochastic approaches, Lecture Notes on Mathematical Modelling in Life Sciences, Springer, Berlin, 2015. [Google Scholar] · Zbl 1331.92002
[45] J.H. Myers and J.S. Cory, Population cycles in Forest Lepidoptera revisited, Annu. Rev. Ecol. Evol. Syst. 44 (2013), pp. 565-592. [Crossref], [Web of Science ®], [Google Scholar]
[46] C. Piou and E. Prevost, A demo-genetic individual-based model for Atlantic salmon populations: Model structure, parameterization and sensitivity, Ecol. Modell. 231(1) (2012), pp. 37-52. [Crossref], [Web of Science ®], [Google Scholar]
[47] A.D. Rey and M.C. Mackey, Multistability and boundary layer development in a transport equation with delayed arguments, Can. Appl. Math. Q. 1(1) (1993), pp. 1-21. [Google Scholar] · Zbl 0783.92028
[48] H. Smith, An Introduction to Delay Differential Equations with Application to the Life Sciences, Springer, New York, 2011. [Crossref], [Google Scholar] · Zbl 1227.34001
[49] D. Sulsky, Numerical solution of structured population models. I Age structure, J. Math. Biol. 31(8) (1993), pp. 817-839. [Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 0777.92016
[50] D.R. Tyson, S.P. Garbett, P.L. Frick, and V. Quaranta, Fractional proliferation: A method to deconvolve cell population dynamics from single-cell data, Nat. Methods 9(9) (2012), pp. 923-928. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[51] H. Von Foerster, Some remarks on changing populations, in The Kinetics of Cellular Proliferation, F. Stohlman, eds., Grune and Stratton, New York, 1959, pp. 382-407. [Google Scholar]
[52] G.F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, CRC Press, New York, 1985. [Google Scholar] · Zbl 0555.92014
[53] G.F. Webb, Population models structured by age, size and spatial position, in Structured Population Models in Biology and Epidemiology, Lecture Notes in Mathematics 1936, P. Magal and S. Ruan, eds., Springer, Berlin, 2008, pp. 1-49. [Crossref], [Google Scholar]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.