×

An equivalent indentation method for the external crack with a Dugdale cohesive zone. (English) Zbl 1447.74041

Summary: An equivalent indentation method is developed for the external crack problem with a Dugdale cohesive zone in the both axisymmetric and two-dimensional (2D) cases. This is achieved based on the principle of superposition by decomposing the original problem into two simple boundary value problems, with one considering action of a constant traction within the cohesive zone, and the other corresponding to indentation by a rigid concave punch. Closed-form expressions are derived for the distributions of displacement and traction on the crack interface, which are consistent with the classical results in fracture mechanics. Results show that the interfacial traction distributions in the axisymmetric and 2D cases share the similar mathematical forms except for different coordinate parameters. Finite element analysis is performed to validate the obtained analytical solutions. The proposed method relies solely on a few contact solutions on the surface irrespective of a general elasticity solution in the whole body, and it may find applications in the external crack analysis and adhesive contact model involving functionally graded elastic solids or piezoelectric materials.

MSC:

74R10 Brittle fracture
74M15 Contact in solid mechanics
74B05 Classical linear elasticity
74G05 Explicit solutions of equilibrium problems in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Dugdale, D. S., Yielding of steel sheets containing slits, J. Mech. Phys. Solids, 8, 100-104 (1960) · doi:10.1016/0022-5096(60)90013-2
[2] Barenblatt, G. I., The mathematical theory of equilibrium cracks in brittle fracture, Adv. Appl. Mech., 7, 55-129 (1962) · doi:10.1016/S0065-2156(08)70121-2
[3] Adams, G. G., A crack close to and perpendicular to an interface: resolution of anomalous behavior with a cohesive zone, J. Appl. Mech., 86 (2019) · doi:10.1115/1.4042289
[4] Wu, J.; Ru, C. Q., A refined cohesive zone model that accounts for inertia of cohesive zone of a moving crack, Mech. Res. Commun., 76, 78-85 (2016) · doi:10.1016/j.mechrescom.2016.08.001
[5] Jain, S.; Liechti, K. M.; Bonnecaze, R. T., Cohesive zone models to understand the interface mechanics of thin film transfer printing, J. Appl. Phys., 125 (2019) · doi:10.1063/1.5049804
[6] Jin, F.; Guo, X.; Wan, Q., Revisiting the Maugis-Dugdale adhesion model of elastic periodic wavy surfaces, J. Appl. Mech., 83 (2016) · doi:10.1115/1.4034119
[7] Li, Y.; Reese, S.; Simon, J.-W., Modeling the fiber bridging effect in cracked wood and paperboard using a cohesive zone model, Eng. Fract. Mech., 196, 83-97 (2018) · doi:10.1016/j.engfracmech.2018.04.002
[8] Elices, M.; Guinea, G. V.; Gomez, J.; Planas, J., The cohesive zone model: advantages, limitations and challenges, Eng. Fract. Mech., 69, 137-163 (2002) · doi:10.1016/S0013-7944(01)00083-2
[9] Hui, C. Y.; Ruina, A.; Long, R.; Jagota, A., Cohesive zone models and fracture, J. Adhes., 87, 1-52 (2011) · doi:10.1080/00218464.2011.538315
[10] Park, K.; Paulino, G. H., Cohesive zone models: a critical review of traction-separation relationships across fracture surfaces, Appl. Mech. Rev., 64 (2011) · doi:10.1115/1.4023110
[11] Chaiyat, S.; Jin, X.; Keer, L. M.; Kiattikomol, K., Analytical and numerical evaluation of crack-tip plasticity of an axisymmetrically loaded penny-shaped crack, C. R. Mecanique, 336, 54-68 (2008) · Zbl 1205.74152 · doi:10.1016/j.crme.2007.10.015
[12] Li, X.; Chen, W.; Wang, H.; Wang, G., Crack tip plasticity of a penny-shaped Dugdale crack in a power-law graded elastic infinite medium, Eng. Fract. Mech., 88, 1-14 (2012) · doi:10.1016/j.engfracmech.2012.03.006
[13] Jin, X.; Chaiyat, S.; Keer, L. M.; Kiattikomol, K., Refined Dugdale plastic zones of an external circular crack, J. Mech. Phys. Solids, 56, 1127-1146 (2008) · Zbl 1171.74425 · doi:10.1016/j.jmps.2007.10.009
[14] Petroski, H. J., Dugdale plastic zone sizes for edge cracks, Int. J. Fract., 15, 217-230 (1979) · doi:10.1007/BF00019932
[15] Tada, H.; Paris, P.; Irwin, G., The Stress Analysis of Cracks Handbook (1985), St. Louis: Paris Productions Inc. (and Del Research Corp), St. Louis
[16] Sneddon, I. N., The distribution of stress in the neighborhood of a crack in an elastic solid, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., 187, 229-260 (1946)
[17] Lowengrub, M.; Sneddon, N., The distribution of stress in the vicinity of an external crack in an infinite elastic solid, Int. J. Eng. Sci., 3, 451-460 (1965) · doi:10.1016/0020-7225(65)90028-5
[18] Barber, J. R., The solution of elasticity problems for the half-space by the method of Green and Collins, Appl. Sci. Res., 40, 135-157 (1983) · Zbl 0519.73009 · doi:10.1007/BF00386216
[19] Keer, L. M., A class of non-symmetrical punch and crack problems, Q. J. Mech. Appl. Math., 17, 423-436 (1964) · Zbl 0129.17701 · doi:10.1093/qjmam/17.4.423
[20] Tada, H.; Ernst, H.; Paris, P., Westergaard stress functions for displacement-prescribed crack problems-I, Int. J. Fract., 61, 39-53 (1993) · doi:10.1007/BF00032338
[21] Tada, H.; Ernst, H.; Paris, P., Westergaard stress functions for displacement-prescribed crack problems-II, Int. J. Fract., 67, 151-167 (1994) · doi:10.1007/BF00019601
[22] Fabrikant, V. I.; Sankar, T. S.; Xistris, G. D., On the conditions at infinity in external crack problems, Eng. Fract. Mech., 23, 921-924 (1986) · doi:10.1016/0013-7944(86)90102-5
[23] Maugis, D., Adhesion of spheres: the JKR-DMT transition using a Dugdale model, J. Colloid Interface Sci., 150, 243-269 (1992) · doi:10.1016/0021-9797(92)90285-T
[24] Maugis, D., Contact, Adhesion, and Rupture of Elastic Solids (2000), Berlin, New York: Springer, Berlin, New York · Zbl 0937.74002
[25] Sneddon, I. N., The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile, Int. J. Eng. Sci., 3, 47-57 (1965) · Zbl 0128.42002 · doi:10.1016/0020-7225(65)90019-4
[26] Baney, J. M.; Hui, C. Y., A cohesive zone model for the adhesion of cylinders, J. Adhes. Sci. Technol., 11, 393-406 (1997) · doi:10.1163/156856197X00778
[27] Chen, S.; Gao, H., Generalized Maugis-Dugdale model of an elastic cylinder in non-slipping adhesive contact with a stretched substrate, Int. J. Mater. Res., 97, 584-593 (2006)
[28] Chen, Z. R.; Yu, S. W., Micro-scale adhesive contact of a spherical rigid punch on a piezoelectric half-space, Compos. Sci. Technol., 65, 1372-1381 (2005) · doi:10.1016/j.compscitech.2004.12.007
[29] Zhou, S.-S.; Gao, X.-L.; He, Q.-C., A unified treatment of axisymmetric adhesive contact problems using the harmonic potential function method, J. Mech. Phys. Solids, 59, 145-159 (2011) · Zbl 1270.74150 · doi:10.1016/j.jmps.2010.11.006
[30] Johnson, K. L., Contact Mechanics (1985), Cambridge: Cambridge University Press, Cambridge · Zbl 0599.73108
[31] Kesari, H.; Lew, A., Adhesive frictionless contact between an elastic isotropic half-space and a rigid axi-symmetric punch, J. Elast., 106, 203-224 (2011) · Zbl 1309.74055 · doi:10.1007/s10659-011-9323-8
[32] Jin, F.; Guo, X.; Zhang, W., A unified treatment of axisymmetric adhesive contact on a power-law graded elastic half-space, J. Appl. Mech., 80 (2013) · doi:10.1115/1.4023980
[33] Hills, D. A.; Nowell, D.; Sackfield, A., Mechanics of Elastic Contacts (1993), Oxford: Butterworth-Heinemann, Oxford · Zbl 0631.73097
[34] Sundaram, N.; Farris, T. N.; Chandrasekar, S., JKR adhesion in cylindrical contacts, J. Mech. Phys. Solids, 60, 37-54 (2012) · Zbl 1244.74095 · doi:10.1016/j.jmps.2011.10.002
[35] Jin, F.; Guo, X.; Gao, H., Adhesive contact on power-law graded elastic solids: the JKR-DMT transition using a double-Hertz model, J. Mech. Phys. Solids, 61, 2473-2492 (2013) · doi:10.1016/j.jmps.2013.07.015
[36] Jin, F.; Yan, S.; Guo, X.; Wang, X., On the contact and adhesion of a piezoelectric half-space under a rigid punch with an axisymmetric power-law profile, Mech. Mater., 129, 189-197 (2019) · doi:10.1016/j.mechmat.2018.11.018
[37] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions (1970), New York: Dover, New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.