×

The Borel map in locally integrable structures. (English) Zbl 1447.32055

Summary: Given a locally integrable structure \(\mathcal{V}\) over a smooth manifold \(\Omega\) and given \(p \in \Omega\) we define the Borel map of \(\mathcal{V}\) at \(p\) as the map which assigns to the germ of a smooth solution of \(\mathcal{V}\) at \(p\) its formal Taylor power series at \(p\). In this work we continue the study initiated in [R. F. Barostichi et al., Math. Nachr. 286, No. 14–15, 1439–1451 (2013; Zbl 1277.35113); G. Della Sala et al., Int. J. Math. 24, No. 11, Article ID 1350091, 16 p. (2013; Zbl 1294.32008)] and present new results regarding the Borel map. We prove a general necessary condition for the surjectivity of the Borel map to hold and also, after developing some new devices, we study some classes of CR structures for which its surjectivity is valid. In the final sections we show how the Borel map can be applied to the study of the algebra of germs of solutions of \(\mathcal{V}\) at \(p\).

MSC:

32V10 CR functions
35N10 Overdetermined systems of PDEs with variable coefficients
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Baouendi, M.S., Chang, C.H., Treves, F.: Microlocal hypo-analyticity and extension of CR functions. J. Differ. Geom. 18(3), 331-391 (1983). http://projecteuclid.org/euclid.jdg/1214437782 · Zbl 0575.32019
[2] Baouendi, MS; Treves, F., A microlocal version of Bochner’s tube theorem, Indiana Univ. Math. J., 31, 6, 885-895 (1982) · Zbl 0505.32013
[3] Barostichi, RF; Cordaro, PD; Petronilho, G., On the Borel property for solutions to systems of complex vector fields, Math. Nachr., 286, 14-15, 1439-1451 (2013) · Zbl 1277.35113
[4] Berhanu, S.; Cordaro, PD; Hounie, J., An introduction to involutive structures, New Mathematical Monographs (2008), Cambridge: Cambridge University Press, Cambridge · Zbl 1151.35011
[5] D’Angelo, JP, Several complex variables and the geometry of real hypersurfaces. Studies in advanced mathematics (1993), Boca Raton: CRC Press, Boca Raton
[6] Della Sala, G.; Lamel, B., Asymptotic approximations and a Borel-type result for CR functions, Int. J. Math., 24, 11, 1350091, 16 (2013) · Zbl 1294.32008
[7] Goldmann, H.: Uniform Fréchet algebras, North-Holland Mathematics Studies, vol. 162. North-Holland Publishing Co., Amsterdam (1990) · Zbl 0718.46017
[8] Hörmander, L.: The analysis of linear partial differential operators. I. Classics in Mathematics. Springer-Verlag, Berlin (2003). 10.1007/978-3-642-61497-2. Distribution theory and Fourier analysis, Reprint of the second (1990) edition [Springer, Berlin; MR1065993 (91m:35001a)]
[9] Köthe, G., Topological vector spaces. II, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science] (1979), New York: Springer, New York · Zbl 0417.46001
[10] Marson, ME, Wedge extendability for hypo-analytic structures, Commun. Partial Differ. Equ., 17, 3-4, 579-592 (1992) · Zbl 0758.58032
[11] Noell, A., Peak points for pseudoconvex domains: a survey, J. Geom. Anal., 18, 4, 1058-1087 (2008) · Zbl 1196.32020
[12] Treves, F., Topological vector spaces, distributions and kernels (1967), New York: Academic Press, New York · Zbl 0171.10402
[13] Treves, F., Hypo-analytic structures, Princeton Mathematical Series (1992), Princeton: Princeton University Press, Princeton · Zbl 0787.35003
[14] Vogt, D.: Lectures on fréchet spaces. Lecture Notes, Bergische Universität Wuppertal, Sommersemester (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.