Effect of \(f(R)\)-gravity models on compact stars. (English. Russian original) Zbl 1446.85003

Theor. Math. Phys. 202, No. 1, 112-125 (2020); translation from Teor. Mat. Fiz. 202, No. 1, 126-142 (2020).
Summary: We study the possibility of forming anisotropic compact stars in the framework of \(f(R)\)-modified gravity in a static spherically symmetric space-time. We find the unknown coefficients involved in the metric using masses and radii of the compact stars 4U 1820-30, Cen X-3, EXO 1785-248, and LMC X-4. We obtain the hydrostatic equilibrium equation for different forces and use the generalized Tolman-Oppenheimer-Volkoff equation to analyze the behavior of stars. Moreover, we verify the regularity conditions, anisotropic behavior, energy conditions, and stability of the compact stars. We use the effective energy-momentum tensor in \(f(R)\) gravity for the analysis. We show that in the framework of \(f(R)\) gravity theory, these compact stars have physically acceptable patterns. Our results here also agree with those in general relativity, which is a special case of \(f(R)\) gravity.


85A15 Galactic and stellar structure
76E20 Stability and instability of geophysical and astrophysical flows
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
Full Text: DOI


[1] Schwarzschild, K., Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie, Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, 189-196 (1916), Berlin: Königlich Preussische Akademie der Wissenschaften, Berlin · JFM 46.1296.02
[2] Ivanov, B. V., Maximum bounds on the surface redshift of anisotropic stars, Phys. Rev. D, 65, 104011 (2002)
[3] Maurya, S. K.; Maharaj, S. D., Anisotropic fluid spheres of embedding class one using Karmarkar condition, Eur. Phys. J. C, 77, 328 (2017)
[4] Bowers, R. L.; Liang, E. P T., Anisotropic spheres in general relativity, Astrophys. J., 188, 657-665 (1974)
[5] Ruderman, R., Pulsars: Structure and dynamics, Ann. Rev. Astron. Astrophys., 10, 427-476 (1972)
[6] M. F. Shamir and M. Ahmad, “Some exact solutions in f(G, T) gravity via Noether symmetries,” Modern Phys. Lett. A, 32, 1750086. · Zbl 1366.83089
[7] Shamir, M. F.; Ahmad, M., Noether symmetry approach in f(G, T) gravity, Eur. Phys. J. C, 77, 55 (2017)
[8] Li, B.; Sotiriou, T. P.; Barrow, J. B., f(T) gravity and local Lorentz invariance, Phys. Rev. D, 83, 064035 (2011)
[9] Harko, T.; Lobo, F. S N.; Nojiri, S.; Odintsov, S. D., f(R,T) gravity, Phys. Rev. D, 84, 024020 (2011)
[10] Capozziello, S.; Laurentis, D. M.; Odintsov, S. D.; Stabile, A., Hydrostatic equilibrium and stellar structure in f(R)-gravity, Phys. Rev. D, 83, 064004 (2011)
[11] Nojiri, S.; Odintsov, S. D., unified cosmic history in modified gravity: From F(R) theory to Lorentz noninvariant models, Phys. Rep., 505, 59-144 (2011)
[12] Nojiri, S.; Odintsov, S. D., Modified f(R) gravity consistent with realistic cosmology: From a matter dominated epoch to a dark energy universe, Phys. Rev. D, 74, 086005 (2006)
[13] Lovelock, D., The Einstein tensor and its generalizations, J. Math. Phys., 12, 498-501 (1971) · Zbl 0213.48801
[14] Harko, T., Evolution of cosmological perturbations in Bose-Einstein condensate dark matter, Mon. Not. R. Astron. Soc., 413, 3095-3104 (2011)
[15] Shamir, M. F.; Naz, T., Compact stars with modified Gauss-Bonnet Tolman-Oppenheimer-Volkoff equation, JETP, 128, 871-877 (2019)
[16] Nojiri, S.; Odintsov, S. D.; Oikonomou, V. K., Modified gravity theories on a nutshell: Inflation, bounce, and late-time evolution, Phys. Rep., 692, 1-104 (2017) · Zbl 1370.83084
[17] Sharif, M.; Ikram, A., Warm inflation in f(g) theory of gravity, JETP, 123, 40-50 (2016)
[18] Capozziello, S.; Nojiri, S.; Odintsov, D.; Troisi, A., Cosmological viability of f(R)-gravity as an ideal fluid and its compatibility with a matter dominated phase, Phys. Lett. B, 639, 135-143 (2006)
[19] Amendola, L.; Polarski, D.; Tsujikawa, S., Power-laws f(R) theories are cosmologically unacceptable, Internat. J. Modern Phys. D, 16, 1555-1561 (2007) · Zbl 1200.83092
[20] Amendola, L.; Polarski, D.; Tsujikawa, S., Are f(R) dark energy models cosmologically viable?, Phys. Rev. Lett., 98, 131302 (2007) · Zbl 1228.83115
[21] Santos, J.; Alcaniz, J. S., Energy conditions and Segre classification of phantom fields, Phys. Lett. B, 619, 11-16 (2005)
[22] Carroll, S. M.; Hoffman, M.; Trodden, M., Can the dark energy equation-of-state parameter w be less than −1?, Phys. Rev. D, 68, 023509 (2003)
[23] Alcaniz, J. S., Testing dark energy beyond the cosmological constant barrier, Phys. Rev. D, 69, 083521 (2004)
[24] Barrow, J. D.; Hervik, S., Anisotropically inflating universes, Phys. Rev. D, 73, 023007 (2006)
[25] Visser, M., Energy conditions in the epoch of galaxy formation, Science, 276, 88-90 (1997)
[26] Santos, J.; Alcaniz, J. S.; Rebouças, M. J., Energy conditions and supernovae observations, Phys. Rev. D, 74, 067301 (2006)
[27] Santos, J.; Alcaniz, J. S.; Rebouças, M. J.; Pires, N., Lookback time bounds from energy conditions, Phys. Rev. D, 76, 043519 (2007)
[28] Rebouças, M. J.; Santos, J., Gödel-type universes in f(R) gravity, Phys. Rev. D, 80, 063009 (2009)
[29] Santos, J.; Rebouças, M. J.; Oliveira, T. B R. F., Godel-type universes in Palatini f(R)gravity, Phys. Rev. D, 81, 123017 (2010)
[30] Wang, J.; Wu, Y-B; Guo, Y-X; Yang, W-Q; Wang, L., Energy conditions and stability in generalized f(R) gravity with arbitrary coupling between matter and geometry, Phys. Lett. B, 689, 133-138 (2010)
[31] Atazadeh, K., Energy conditions in f(R) gravity and Brans-Dicke theories, Internat. J. Modern Phys. D, 18, 1101-1111 (2009) · Zbl 1168.83330
[32] Banijamali, A.; Fazlpour, B.; Setare, M. R., Energy conditions in f(G) modified gravity with non-minimal coupling to matter, Astrophys. Space Sci., 338, 327-332 (2012) · Zbl 1270.83035
[33] Wang, J.; Liao, K., Energy conditions in f(R, L_m) gravity, Class. Q. Grav., 29, 215016 (2012) · Zbl 1266.83069
[34] Hossein, S. M.; Rahaman, F.; Naskar, J.; Kalam, M.; Ray, S., Anisotropic compact stars with variable cosmological constant, Internat. J. Modern Phys. D, 21, 1250088 (2012) · Zbl 1263.83045
[35] Ivanov, B. V., Analytical study of anisotropic compact star models, Eur. Phys. J. C, 77, 738 (2017)
[36] Deb, D.; Chowdhury, S. R.; Ray, S.; Rahaman, F.; Guha, B. K., Relativistic model for anisotropic strange stars, Ann. Phys., 387, 239-252 (2017) · Zbl 1377.85007
[37] Aziz, A.; Ray, S.; Rahaman, F., A generalized model for compact stars, Eur. Phys. J. C, 76, 248 (2016)
[38] Astashenok, A. V.; Capozziello, S.; Odintsov, S. D., Further stable neutron star models from f(R) gravity, JCAP, 1312, 040 (2013)
[39] Astashenok, A. V.; Odintsov, S. D., From neutron stars to quark stars in mimetic gravity, Phys. Rev. D, 94, 063008 (2016)
[40] Astashenok, A. V.; Capozziello, S.; Odintsov, S. D., Magnetic neutron stars in f(R) gravity, Astrophys. Space Sci., 355, 333-341 (2015)
[41] M. Zubair and G. Abbas, “Study of anisotropic compact stars in Starobinsky model,” arXiv:1412.2120v3 [physics.gen-ph] (2014).
[42] Astashenok, A. V.; Odintsov, S. D.; de la Cruz-Dombriz, A., The realistic models of relativistic stars in f(R) = R + R^2 gravity, Class. Q. Grav., 34, 205008 (2017) · Zbl 1380.85003
[43] Astashenok, A. V.; Capozziello, S.; Odintsov, S. D., Nonperturbative models of quark stars in f(R) gravity, Phys. Lett. B, 742, 160-166 (2015) · Zbl 1345.83026
[44] Jasim, M. K., Anisotropic strange stars in Tolman-Kuchowicz spacetime, Eur. Phys. J. C, 78, 603 (2018)
[45] Tolman, R. C., Static solutions of Einstein’s field equations for spheres of fluid, Phys. Rev., 55, 364-373 (1939) · Zbl 0020.28407
[46] Patwardhan, G. K.; Vaidya, P. C., Relativistic distributions of matter of radial symmetry, J. Univ. Bombay, n.s., 12, 23-36 (1943) · Zbl 0060.44109
[47] Mehra, A. L., Radially symmetric distribution of matter, J. Austr. Math. Soc., 6, 153-155 (1966) · Zbl 0171.45803
[48] Kuchowicz, B., General relativistic fluid spheres: I. New solutions for spherically symmetric matter distributions, Acta Phys. Pol., 33, 541-563 (1968)
[49] Leibovitz, C., Spherically symmetric static solutions of Einstein’s equations, Phys. Rev. D, 185, 1664-1669 (1969)
[50] Maurya, S. K.; Gupta, Y. K.; Ray, S.; Dayanandan, B., Anisotropic models for compact stars, Eur. Phys. J. C, 75, 225 (2015)
[51] Starobinsky, A. A., A new type of isotropic cosmological models without singularity, Phys. Lett. B, 91, 99-102 (1980) · Zbl 1371.83222
[52] Cognola, G., Class of viable modified f(R) gravities describing inflation and the onset of accelerated expansion, Phys. Rev. D, 77, 046009 (2008)
[53] Clifton, T., Further exact cosmological solutions to higher-order gravity theories, Class. Q. Grav., 23, 7445-7454 (2006) · Zbl 1107.83047
[54] Ganguly, A.; Gannouji, R.; Goswami, R.; Ray, S., Neutron stars in the Starobinsky model, Phys. Rev. D, 89, 064019 (2014)
[55] Cooney, A.; DeDeo, S.; Psaltis, D., Neutron stars in f(R) gravity with perturbative constraints, Phys. Rev. D, 82, 064033 (2010)
[56] Momeni, D.; Myrzakulov, R., Tolman-Oppenheimer-Volkoff equations in modified Gauss-Bonnet gravity, Internat. J. Geom. Methods Modern Phys., 12, 1550014 (2015) · Zbl 1311.83045
[57] Stephani, H., General Relativity (1990), Cambridge: Cambridge Univ. Press, Cambridge
[58] Güver, T.; Wroblewski, P.; Camarota, L.; Özel, F., The mass and radius of the neutron star in 4U 1820-30, Astrophys. J., 719, 1807-1812 (2010)
[59] Rawls, M. L.; Orosz, J. A.; McClintock, J. E.; Torres, M. A P.; Bailyn, C. D.; Buxton, M. M., Refined neutron star mass determinations for six eclipsing X-ray pulsar binaries, Astrophys. J., 730, 25 (2011)
[60] Özel, F.; Güver, T.; Psaltis, T., The mass and radius of the neutron star in EXO 1745-248, Astrophys. J., 693, 1775-1789 (2009)
[61] Yousaf, Z., Stellar filaments with Minkowskian core in the Einstein-A gravity, Eur. Phys. J. Plus, 132, 276 (2017)
[62] Bamba, K.; Ilyas, M.; Bhatti, M. Z.; Yousaf, Z., Energy conditions in modified f(G) gravity, Gen. Rel. Grav., 49, 112 (2017) · Zbl 1397.83095
[63] Herrera, L., Cracking of self-gravitating compact objects, Phys. Lett. A, 165, 206-210 (1992)
[64] Abreu, H.; Hernández, H.; Núñez, L. A., Sound speeds, cracking and the stability of self-gravitating anisotropic compact objects, Class. Q. Grav., 24, 4631-4645 (2007) · Zbl 1128.83023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.