×

zbMATH — the first resource for mathematics

Control of a swept-wing boundary layer using ring-type plasma actuators. (English) Zbl 1446.76040
Summary: Application of ring-type plasma actuators for control of laminar-turbulent transition in a swept-wing boundary layer is investigated thorough direct numerical simulations. These actuators induce a wall-normal jet in the boundary layer and can act as virtual roughness elements. The flow configuration resembles experiments by
J.-H. Kim, M. Forte and K.-S. Choi [“BUTERFLI D3.19 Report. (Experiment)”. Techn. Rep., Univ. Nottingham (2017)]. The actuators are modelled by the volume forces computed from the experimentally measured induced velocity field at the quiescent air condition. Stationary and travelling cross-flow vortices are triggered in the simulations by means of surface roughness and random unsteady perturbations. Interaction of vortices generated by actuators with these perturbations is investigated in detail. It is found that, for successful transition control, the power of the actuators should be increased to generate jet velocities that are one order of magnitude higher than those used in the experiments by Kim et al. [loc.cit] mentioned above.

MSC:
76-10 Mathematical modeling or simulation for problems pertaining to fluid mechanics
76D10 Boundary-layer theory, separation and reattachment, higher-order effects
76D55 Flow control and optimization for incompressible viscous fluids
76F06 Transition to turbulence
Software:
EDGE; GitHub; gridgen; Nek5000
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bippes, H., Basic experiments on transition in three-dimensional boundary layers dominated by crossflow instability, Prog. Aerosp. Sci., 35, 4, 363-412, (1999)
[2] Bonfigli, G. & Kloker, M.1999Spatial Navier-Stokes simulation of crossflow-induced transition in a three-dimensional boundary layer. In New Results in Numerical and Experimental Fluid Mechanics II, pp. 61-68. Springer. doi:10.1007/978-3-663-10901-3_9
[3] Carpenter, A. L., Saric, W. S. & Reed, H. L.2009 In-flight receptivity experiments on a 30-degree swept-wing using micron-sized discrete roughness elements. AIAA Paper 2009-590.
[4] Dörr, P. C.; Kloker, M. J., Numerical investigation of plasma-actuator force-term estimations from flow experiments, J. Phys. D: Appl. Phys., 48, 39, (2015)
[5] Dörr, P. C.; Kloker, M. J., Stabilisation of a three-dimensional boundary layer by base-flow manipulation using plasma actuators, J. Phys. D: Appl. Phys., 48, 28, (2015)
[6] Dörr, P. C.; Kloker, M. J., Transition control in a three-dimensional boundary layer by direct attenuation of nonlinear crossflow vortices using plasma actuators, Intl J. Heat Fluid Flow, 61 B, 449-465, (2016)
[7] Eliasson, P.2002Edge, a Navier-Stokes solver for unstructured grids. In Proc. to Finite Volumes for Complex Applications III, pp. 527-534. · Zbl 1177.76285
[8] Fischer, P. F., Lottes, J. W. & Kerkemeier, S. G.2008 Nek5000 Web page. http://nek5000.mcs.anl.gov.
[9] Hellsten, A. K., New advanced k-𝜔 turbulence model for high-lift aerodynamics, AIAA J., 43, 9, 1857-1869, (2005)
[10] Högberg, M.; Henningson, D., Secondary instability of cross-flow vortices in Falkner-Skan-Cooke boundary layers, J. Fluid Mech., 368, 339-357, (1998) · Zbl 0926.76037
[11] Hosseini, S. M.; Tempelmann, D.; Hanifi, A.; Henningson, D. S., Stabilization of a swept-wing boundary layer by distributed roughness elements, J. Fluid Mech., 718, R1, (2013) · Zbl 1284.76105
[12] Hosseini, S. M.; Vinuesa, R.; Schlatter, P.; Hanifi, A.; Henningson, D. S., Direct numerical simulation of the flow around a wing section at moderate Reynolds number, Intl J. Heat Fluid Flow, 61 A, 117-128, (2016)
[13] Kachanov, Y. S., Borodulin, V. I. & Ivanov, A. V.2015 Transition experiments with controlled freestream turbulence level and controlled acoustic pertubations. Technical Report. RODTRAC project TR D4.3.
[14] Kim, J.-H. & Choi, K.-S.2016 Report on the properties and operation conditions of the actuators producing a spanwise row of wall-normal jets and the flow induced in the preliminary tests. Technical Report. BUTERFLI Project TR D3.15.
[15] Kim, J.-H., Forte, M. & Choi, K.-S.2016 Report on the experimental results on transition delay in the ‘Juju’ TRIN1 wind tunnel by the VR DBD actuators based on wall-normal jets. Technical Report. BUTERFLI Project TR D3.19, http://eprints.nottingham.ac.uk/id/eprint/46529.
[16] Kriegseis, J.; Grundmann, S.; Tropea, C., Airflow influence on the discharge performance of dielectric barrier discharge plasma actuators, Phys. Plasmas, 19, 7, (2012)
[17] Lerche, T.1996Experimental investigation of nonlinear wave interactions and secondary instability in three-dimensional boundary-layer flow. In Advances in Turbulence VI, pp. 357-360. Springer. doi:10.1007/978-94-009-0297-8_101
[18] Lerche, T. & Bippes, H.1996Experimental investigation of cross-flow instability under the influence of controlled disturbance excitation. In Transitional Boundary Layers in Aeronautics (ed. Henkes, R. & Van Ingen, J. L.). North Holland.
[19] Li, F., Choudhari, M., Chang, C.-L., Streett, C. L. & Carpenter, M. H.2009 Roughness based crossflow transition control: a computational assessment. AIAA Paper 2009-4105.
[20] Maday, Y. & Patera, A. T.1989Spectral element methods for the incompressible Navier-Stokes equations. In State of the Art Surveys on Computational Mechanics, vol. 1, pp. 71-143. ASME.
[21] Malik, M. R., Li, F. & Chang, C.-L.1996Nonlinear crossflow disturbances and secondary instabilities in swept-wing boundary layers. In IUTAM Symposium on Nonlinear Instability and Transition in Three-Dimensional Boundary Layers, pp. 257-266. Springer. doi:10.1007/978-94-009-1700-2_25 · Zbl 0875.76125
[22] Malik, M. R.; Li, F.; Choudhari, M. M.; Chang, C.-L., Secondary instability of crossflow vortices and swept-wing boundary-layer transition, J. Fluid Mech., 399, 85-115, (1999) · Zbl 0972.76028
[23] Örlü, R.; Schlatter, P., Comparison of experiments and simulations for zero pressure gradient turbulent boundary layers at moderate Reynolds numbers, Exp. Fluids, 54, 6, 1547, (2013)
[24] Patera, A. T., A spectral element method for fluid dynamics: laminar flow in a channel expansion, J. Comput. Phys., 54, 3, 468-488, (1984) · Zbl 0535.76035
[25] Rizzetta, D. P.; Visbal, M. R.; Reed, H. L.; Saric, W. S., Direct numerical simulation of discrete roughness on a swept-wing leading edge, AIAA J., 48, 11, 2660-2673, (2010)
[26] Sakov, P.2011 gridgen-c: an orthogonal grid generator based on the CRDT algorithm (by conformal mapping). https://github.com/sakov/gridgen-c.
[27] Saric, W. S., Carpenter, A. L. & Reed, H. L.2008 Laminar flow control flight tests for swept wings: strategies for LFC. AIAA Paper 2008-3834.
[28] Saric, W. S.; Carpenter, A. L.; Reed, H. L., Passive control of transition in three-dimensional boundary layers, with emphasis on discrete roughness elements, Phil. Trans. R. Soc. Lond. A, 369, 1940, 1352-1364, (2011) · Zbl 1219.76015
[29] Saric, W. S.; Reed, H. L.; White, E. B., Stability and transition of three-dimensional boundary layers, Annu. Rev. Fluid Mech., 35, 1, 413-440, (2003) · Zbl 1039.76018
[30] Saric, W. S., Ruben, C. Jr. & Reibert, M.1998 Leading-edge roughness as a transition control mechanism. AIAA Paper 98-0781.
[31] Saric, W. S., West, D. E., Tufts, M. W. & Reed, H. L.2015 Flight test experiments on discrete roughness element technology for laminar flow control. AIAA Paper 539, 2015.
[32] Schrauf, G., Status and perspectives of laminar flow, Aeronaut. J., 109, 1102, 639-644, (2005)
[33] Schuele, C. Y.; Corke, T. C.; Matlis, E., Control of stationary cross-flow modes in a mach 3.5 boundary layer using patterned passive and active roughness, J. Fluid Mech., 718, 5-38, (2013) · Zbl 1284.76029
[34] Tufo, H. M.; Fischer, P. F., Fast parallel direct solvers for coarse grid problems, J. Parallel Distrib. Comput., 61, 2, 151-177, (2001) · Zbl 0972.68191
[35] Wallin, S.; Johansson, A. V., An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows, J. Fluid Mech., 403, 89-132, (2000) · Zbl 0966.76032
[36] Wassermann, P.; Kloker, M., Mechanisms and passive control of crossflow-vortex-induced transition in a three-dimensional boundary layer, J. Fluid Mech., 456, 49-84, (2002) · Zbl 1081.76546
[37] Wassermann, P.; Kloker, M., Transition mechanisms induced by travelling crossflow vortices in a three-dimensional boundary layer, J. Fluid Mech., 483, 67-89, (2003) · Zbl 1055.76011
[38] White, E. B.; Saric, W. S., Secondary instability of crossflow vortices, J. Fluid Mech., 525, 275-308, (2005) · Zbl 1065.76007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.