zbMATH — the first resource for mathematics

Convergence of finite element methods for hyperbolic heat conduction model with an interface. (English) Zbl 1446.65108
Summary: The paper concerns numerical study of non-Fourier bio heat transfer model in multi-layered media. Specifically, we employ the Maxwell-Cattaneo equation on the physical media with discontinuous coefficients. A fitted finite element method is proposed and analyzed for a hyperbolic heat conduction model with discontinuous coefficients. Typical semidiscrete and fully discrete schemes are presented for a fitted finite element discretization with straight interface triangles. The fully discrete space-time finite element discretizations are based on second order in time Newmark scheme. Optimal a priori error estimates for both semidiscrete and fully discrete schemes are proved in \(L^\infty(L^2)\) norm. Numerical experiments are reported for several test cases to confirm our theoretical convergence rate. Finite element algorithm presented here can be used to solve a wide variety of hyperbolic heat conduction models for non-homogeneous inner structures.

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
78A25 Electromagnetic theory (general)
80A10 Classical and relativistic thermodynamics
35Q79 PDEs in connection with classical thermodynamics and heat transfer
Full Text: DOI
[1] Birkebak, R. C., Heat transfer in biological systems, Int. Rev. Gen. Exp. Zool., 2, 269-344 (1966)
[2] Bowman, H. F.; Cravalho, E. G.; Woods, M., Theory, measurement, and application of thermal properties of biomaterials, Annu. Rev. Biophys. Bioeng., 4, 1, 43-80 (1975)
[3] Arkin, H.; Xu, L.; Holmes, K., Recent developments in modeling heat transfer in blood perfused tissues, IEEE Trans. Biomed. Eng., 41, 2, 97-107 (1994)
[4] Bischof, J. C., Micro and nanoscale phenomenon in bioheat transfer, Heat Mass Transf., 42, 10, 955 (2006)
[5] Dai, W.; Wang, H.; Jordan, P. M.; Mickens, R. E.; Bejan, A., A mathematical model for skin burn injury induced by radiation heating, Int. J. Heat Mass Transfer, 51, 23-24, 5497-5510 (2008) · Zbl 1151.80302
[6] Kumar, P.; Kumar, D.; Rai, K., A numerical study on dual-phase-lag model of bio-heat transfer during hyperthermia treatment, J. Therm. Biol., 49, 98-105 (2015)
[7] Liu, K.-C.; Wang, Y.-N.; Chen, Y.-S., Investigation on the bio-heat transfer with the dual-phase-lag effect, Int. J. Therm. Sci., 58, 29-35 (2012)
[8] Mitra, K.; Kumar, S.; Vedevarz, A.; Moallemi, M., Experimental evidence of hyperbolic heat conduction in processed meat, J. Heat Transfer, 117, 3, 568-573 (1995)
[9] Narasimhan, A.; Sadasivam, S., Non-fourier bio heat transfer modelling of thermal damage during retinal laser irradiation, Int. J. Heat Mass Transfer, 60, 591-597 (2013)
[10] Rodrigues, D.; Pereira, P.; Limão-Vieira, P.; Stauffer, P.; Maccarini, P. F., Study of the one dimensional and transient bioheat transfer equation: multi-layer solution development and applications, Int. J. Heat Mass Transfer, 62, 153-162 (2013)
[11] Semenyuk, V., Prediction of temperature and damage in an irradiated human eye during retinal photocoagulation, Int. J. Heat Mass Transfer, 126, 306-316 (2018)
[12] Xu, F.; Lu, T.; Seffen, K.; Ng, E., Mathematical modeling of skin bioheat transfer, Appl. Mech. Rev., 62, 5, 050801 (2009)
[13] Pennes, H. H., Analysis of tissue and arterial temperature in the resting human forearm, J. Appl. Physiol., 1, 2, 93-122 (1948)
[14] Kim, K.; Guo, Z., Multi-time-scale heat transfer modeling of turbid tissues exposed to short-pulsed irradiations, Comput. Methods Programs Biomed., 86, 2, 112-123 (2007)
[15] Vedavarz, A.; Kumar, S.; Moallemi, M. K., Significance of non-fourier heat waves in conduction, J. Heat Transfer, 116, 1, 221-226 (1994)
[16] Xu, F.; Seffen, K.; Lu, T., Non-fourier analysis of skin biothermomechanics, Int. J. Heat Mass Transfer, 51, 9-10, 2237-2259 (2008) · Zbl 1144.80358
[17] Tzou, D. Y., Macro-to Microscale Heat Transfer: the Lagging Behavior (2014), John Wiley & Sons
[18] Joseph, D. D.; Preziosi, L., Heat waves, Rev. Modern Phys., 61, 1, 41 (1989) · Zbl 1129.80300
[19] Joshi, A.; Majumdar, A., Transient ballistic and diffusive phonon heat transport in thin films, J. Appl. Phys., 74, 1, 31-39 (1993)
[20] Ã-zisik, M. N.; Özısık, M. N.; Özışık, M. N., Heat Conduction (1993), John Wiley & Sons
[21] Frankel, J.; Vick, B.; Özisik, M., General formulation and analysis of hyperbolic heat conduction in composite media, Int. J. Heat Mass Transfer, 30, 7, 1293-1305 (1987) · Zbl 0627.76106
[22] Lor, W.-B.; Chu, H.-S., Hyperbolic heat conduction in thin-film high tc superconductors with interface thermal resistance, Cryogenics, 39, 9, 739-750 (1999)
[23] Deka, B., A priori \(L^\infty ( L^2 )\) error estimates for finite element approximations to the wave equation with interface, Appl. Numer. Math., 115, 142-159 (2017) · Zbl 1358.65062
[24] Deka, B.; Ahmed, T., Convergence of finite element method for linear second-order wave equations with discontinuous coefficients, Numer. Methods Partial Differential Equations, 29, 5, 1522-1542 (2013) · Zbl 1274.65255
[25] Kreiss, H.-O.; Petersson, N. A., An embedded boundary method for the wave equation with discontinuous coefficients, SIAM J. Sci. Comput., 28, 6, 2054-2074 (2006) · Zbl 1131.65075
[26] Virta, K.; Mattsson, K., Acoustic wave propagation in complicated geometries and heterogeneous media, J. Sci. Comput., 61, 1, 90-118 (2014) · Zbl 1306.65247
[27] Zhang, C.; LeVeque, R. J., The immersed interface method for acoustic wave equations with discontinuous coefficients, Wave Motion, 25, 3, 237-263 (1997) · Zbl 0915.76084
[28] Singh, S.; Singh, S.; Li, Z., A high order compact scheme for a thermal wave model of bio-heat transfer with an interface, Numer. Math. Theory Methods Appl., 11, 2, 321-337 (2018) · Zbl 1424.80002
[29] Baker, G. A., Error estimates for finite element methods for second order hyperbolic equations, SIAM J. Numer. Anal., 13, 4, 564-576 (1976) · Zbl 0345.65059
[30] Gorynina, O.; Lozinski, A.; Picasso, M., Time and space adaptivity of the wave equation discretized in time by a second-order scheme, IMA J. Numer. Anal., 39, 4, 1672-1705 (2018) · Zbl 07130804
[31] Newmark, N. M., A method of computation for structural dynamics, ((1959), American Society of Civil Engineers)
[32] Gupta, J. S.; Sinha, R. K.; Reddy, G. M.M.; Jain, J., A posteriori error analysis of the crank-nicolson finite element method for linear parabolic interface problems: A reconstruction approach, J. Comput. Appl. Math., 340, 173-190 (2018) · Zbl 1432.65146
[33] Adams, R.; Fournier, J., Sobolev Spaces (2003), Academic Press: Academic Press Amsterdam · Zbl 1098.46001
[34] Ammari, H.; Chen, D.; Zou, J., Well-posedness of an electric interface model and its finite element approximation, Math. Models Methods Appl. Sci., 26, 3, 601-625 (2016) · Zbl 1331.78025
[35] Basson, M.; Stapelberg, B.; van Rensburg, N. F.J., Error estimates for semi-discrete and fully discrete galerkin finite element approximations of the general linear second-order hyperbolic equation, Numer. Funct. Anal. Optim., 38, 4, 466-485 (2017) · Zbl 1372.65269
[36] Lions, J. L.; Magenes, E., Non-Homogeneous Boundary Value Problems and Applications, Vol. 1 (2012), Springer Science & Business Media
[37] Showalter, R. E., Hilbert Space Methods in Partial Differential Equations (2010), Courier Corporation
[38] B. Deka, J. Dutta, Finite element methods for non-fourier thermal wave model of bio heat transfer with an interface, http://dx.doi.org/10.1007/s12190-019-01304-8.
[39] Li, J.; Melenk, J. M.; Wohlmuth, B.; Zou, J., Optimal a priori estimates for higher order finite elements for elliptic interface problems, Appl. Numer. Math., 60, 1-2, 19-37 (2010) · Zbl 1208.65168
[40] Ren, X.; Wei, J., On a two-dimensional elliptic problem with large exponent in nonlinearity, Trans. Amer. Math. Soc., 343, 2, 749-763 (1994) · Zbl 0804.35042
[41] Stein, E. M., Singular Integrals and Differentiability Properties of Functions (PMS-30), Vol. 30 (2016), Princeton university press
[42] Luikov, A., Application of irreversible thermodynamics methods to investigation of heat and mass transfer, Int. J. Heat Mass Transfer, 9, 2, 139-152 (1966)
[43] Kaminski, W., Hyperbolic heat conduction equation for materials with a nonhomogeneous inner structure, J. Heat Transfer, 112, 3, 555-560 (1990)
[44] Bamberger, A.; Glowinski, R.; Tran, Q. H., A domain decomposition method for the acoustic wave equation with discontinuous coefficients and grid change, SIAM J. Numer. Anal., 34, 2, 603-639 (1997) · Zbl 0877.35066
[45] Kelly, K.; Ward, R.; Treitel, S.; Alford, R., Synthetic seismograms: a finite-difference approach, Geophysics, 41, 1, 2-27 (1976)
[46] Tran, Q. H.; Jannaud, L.; Adler, P., Coda spectral power and apparent attenuation factor of acoustic waves in 3-d random media, J. Acoust. Soc. Am., 94, 4, 2397-2407 (1993)
[47] Ozen, S.; Helhel, S.; Cerezci, O., Heat analysis of biological tissue exposed to microwave by using thermal wave model of bio-heat transfer (twmbt), Burns: J. Int. Soc. Burn Injuries, 34, 1, 45-49 (2008)
[48] Kumar, S.; Srivastava, A., Finite integral transform-based analytical solutions of dual phase lag bio-heat transfer equation, Appl. Math. Model., 52, 378-403 (2017) · Zbl 07166333
[49] Chen, Z.; Zou, J., Finite element methods and their convergence for elliptic and parabolic interface problems, Numer. Math., 79, 2, 175-202 (1998) · Zbl 0909.65085
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.