×

zbMATH — the first resource for mathematics

Modelling genetic networks with noisy and varied experimental data: the circadian clock in Arabidopsis thaliana. (English) Zbl 1445.92014
Summary: Circadian clocks in all organisms include feedback loops that generate rhythmic expression of key genes. We model the first such loop proposed for the clock of Arabidopsis thaliana, the experimental model species for circadian timing in higher plants. As for many biological systems, there are no experimental values for the parameters in our model, and the data available for parameter fitting is noisy and varied. To tackle this we constructed a cost function, which quantifies the agreement between our model and various key experimental features. We then undertook an efficient global search of parameter space, to test whether the proposed circuit can fit the experimental data. Using this approach we show that circadian clock models can function well with low cooperativity in transcriptional regulation, whereas high cooperativity has been a feature of previous (hand-fitted) clock models in other species. Our optimized solution for the Arabidopsis clock model fits several, but not all, of the key experimental features. We test the predicted effects of well-characterized mutations in the clock circuit and show the phases of the circadian cycle where additional components that are yet to be identified experimentally must be present to complete the circadian feedback loop.

MSC:
92B25 Biological rhythms and synchronization
92C42 Systems biology, networks
92C40 Biochemistry, molecular biology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alabadi, D.; Oyama, T.; Yanovsky, M. J.; Harmon, F. G.; Mas, P.; Kay, S. A., Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock, Science, 293, 880-883 (2001)
[2] Alabadi, D.; Yanovsky, M. J.; Mas, P.; Harmer, S. L.; Kay, S. A., Critical role for CCA1 and LHY in maintaining circadian rhythmicity in Arabidopsis, Curr. Biol., 12, 757-761 (2002)
[3] Bauer, D.; Viczian, A.; Kircher, S.; Nobis, T.; Nitschke, R.; Kunkel, T.; Panigrahi, K. C.; Adams, E.; Fejes, E.; Schafer, E.; Nagy, F., Constitutive photomorphogenesis 1 and multiple photoreceptors control degradation of phytochrome interacting factor 3, a transcription factor required for light signaling in Arabidopsis, Plant Cell, 16, 1433-1445 (2004)
[4] Brooks, S. P.; Morgan, B., Optimization using simulated annealing, The Statistician, 44, 241-257 (1995)
[5] Brown, K. S.; Sethna, J. P., Statistical mechanical approaches to models with many poorly known parameters, Phys. Rev. E, 68 (2003)
[6] Carre, I. A.; Kim, J. Y., MYB transcription factors in the Arabidopsis circadian clock, J. Exp. Bot., 53, 1551-1557 (2002)
[7] Christensen, M.; Falkeid, G.; Loros, J.; Dunlap, J.; Lillo, C.; Ruoff, P., A nitrate-induced frq-less oscillator in Neurospora crassa, J. Biol. Rhythms, 19, 280-286 (2004)
[8] Covington, M.; Panda, S.; Liu, X.; Strayer, C.; Wagner, D.; Kay, S., ELF3 modulates resetting of the circadian clock in arabidopsis, Plant Cell, 13, 1305-1315 (2001)
[9] Daniel, X.; Sugano, S.; Tobin, E. M., CK2 phosphorylation of CCA1 is necessary for its circadian oscillator function in Arabidopsis, Proc. Natl. Acad. Sci, 101, 3292-3297 (2004)
[10] Doyle, M. R.; Davis, S. J.; Bastow, R. M.; McWatters, H. G.; Kozma-Bognar, L.; Nagy, F.; Millar, A. J.; Amasino, R., The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana, Nature, 419, 74-77 (2003)
[11] Dunlap, J., Molecular bases of circadian clocks, Cell, 96, 271-290 (1999)
[12] Dunlap, J. C.; Loros, J. L.; DeCoursey, P. J., ChronobiologyBiological TimeKeeping (2003), Sinauer: Sinauer Sunderland
[13] Eriksson, M. E.; Millar, A. J., The circadian clock. A plant’s best friend in a spinning world, Plant Physiol., 132, 732-738 (2003)
[14] Forger, D. B.; Peskin, C. S., A detailed predictive model of the mammalian clock, Proc. Natl. Acad. Sci., 100, 14806-14811 (2003)
[15] Goldbeter, A., Computational approaches to cellular rhythms, Nature, 420, 238-245 (2002)
[16] Hall, A.; Bastow, R. M.; Davis, S. J.; Hanano, S.; Mcwatters, H. G.; Hibberd, V.; Doyle, M. R.; Sung, S.; Amasino, K. J.H. R.M.; Millar, A. J., The TIME FOR COFFEE gene maintains the amplitude and timing of Arabidopsis circadian clocks, Plant Cell, 15, 2719-2729 (2003)
[17] Harmer, S. L.; Hogenesch, J. B.; Straume, M.; Chang, H. S.; Han, B.; Zhu, T.; Wang, X.; Kreps, J. A.; Kay, S. A., Orchestrated transcription of key pathways in Arabidopsis by the circadian clock, Science, 290, 2110-2113 (2000)
[18] Joe, S.; Kuo, F. Y., Remark on algorithm 659implementing sobol’s quasirandom sequence generator, ACM Trans. Math. Software (TOMS) Arch., 29, 49-57 (2003)
[19] Kaczorowski, K. A.; Quail, P. H., Arabidopsis PSEUDO-RESPONSE REGULATOR7 is a signaling intermediate in phytochrome-regulated seedling deetiolation and phasing of the circadian clock, Plant Cell, 15, 2654-2665 (2003)
[20] Kim, J. Y.; Song, H. R.; Taylor, B. L.; Carre, I. A., Light-regulated translation mediates gated induction of the Arabidopsis clock protein LHY, EMBO J., 22, 935-944 (2003)
[21] Kurosawa, G.; Iwasa, Y., Saturation of enzyme kinetics in circadian clock models, J. Biol. Rhythms, 17, 568-577 (2002)
[22] Kurosawa, G.; Mochizuki, A.; Iwasa, Y., Comparative study of circadian clock models, in search of processes promoting oscillation, J. Theor. Biol., 216, 193-208 (2002)
[23] Leloup, J. C.; Goldbeter, A., Toward a detailed computational model for the mammalian circadian clock, Proc. Natl. Acad. Sci, 100, 7051-7056 (2003)
[24] Leloup, J. C.; Gonze, D.; Goldbeter, A., Limit cycle models for circadian rhythms based on transcriptional regulation in Neurospora and Drosophila, J. Biol. Rhythms, 14, 433-448 (1999)
[25] Lillo, C.; Ruoff, P., A minimal model of light-induced circadian rhythms of nitrate reductase activity in leaves of barley, Plant Physiol., 62, 589-592 (1984)
[26] Makino, S., Kiba, T., Imamura, A., Hanaki, N., Nakamura, A., Suzuki, T., Taniguchi, M., Ueguchi, C., Sugiyama, T., Mizuno, T., 2000. Genes encoding pseudo-response regulators: insight into His-to-Asp phosphorelay and circadian rhythm in Arabidopsis thaliana. Plant Cell Physiol. 41, 791-803.
[27] Mas, P.; Kim, W. Y.; Somers, D. E.; Kay, S. A., Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana, Nature, 426, 567-570 (2003)
[28] Matsushika, A.; Makino, S.; Kojima, M.; Mizuno, T., Circadian waves of expression of the APRR1/TOC1 family of pseudo-response regulators in Arabidopsis thalianaan insite into the plant circadian clock, Plant Cell Physiol., 41, 1002-1012 (2000)
[29] McWatters, H. G.; Bastow, R. M.; Hall, A.; Millar, A. J., The ELF3 zeitnehmer regulates light signalling to the circadian clock, Nature, 6813, 716-720 (2000)
[30] Mendes, P.; Kell, D. B., Non-linear optimization of biochemical pathwaysapplications to metabolic engineering and parameter estimation, Bioinformatics, 14, 869-883 (1998)
[31] Millar, A. J.; Straume, M.; Chory, J.; Chua, N. H.; Kay, S. A., The regulation of circadian period by phototransduction pathways in Arabidopsis, Science, 267, 1163-1166 (1995)
[32] Mizoguchi, T.; Wheatley, K.; Hanzawa, Y.; Wright, L.; Mizoguchi, M.; Song, H. R.; Carre, I. A.; Coupland, G., LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis, Dev. Cell, 2, 629-641 (2002)
[33] Press, W. H.; Teukolsky, S. A.; Vettering, W. T.; Flannery, B. P., Numerical Recipes in CThe Art of Scientific Computing (1996), Cambridge University Press: Cambridge University Press Cambridge
[34] Ramlaho, C.; Hastings, J.; Colepicolo, P., Circadian oscillation of nitrate reductase activity in Gonyaulax polyedra is due to changes in cellular protein levels, Plant Physiol., 107, 225-231 (1995)
[35] Ruoff, P.; Rensing, L., The temperature-compensated Goodwin model simulates many circadian clock properties, J. Theor. Biol., 179, 275-285 (1996)
[36] Ruoff, P.; M Vindjevik, C. M.; Rensing, L., The Goodwin oscillatoron the importance of degradation reactions in the circadian clock, J. Biol. Rhythms, 14, 469-479 (1999)
[37] Ruoff, P.; Vindjevik, M.; Mohsenzadeh, S.; Rensing, L., The Goodwin modelsimulating the effect of cycloheximide and heat shock on the sporulation rhythm of Neurospora crassa, J. Theor. Biol., 196, 483-494 (1999)
[38] Ruoff, P.; M Vindjevik, C. M.; Rensing, L., The Goodwin modelsimulating the effect of light pulses on the circadian sporulation rhythm of Neurospora crassa, J. Theor. Biol., 209, 29-42 (2001)
[39] Schaffer, R.; Ramsay, N.; Samach, A.; Corden, S.; Putterill, J.; Carre, I. A.; Coupland, G., The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering, Cell, 93, 1219-1229 (1998)
[40] Shampine, L. F.; Reichelt, M., The MATLAB ODE suite, SIAM J. Sci. Comput., 18, 1-22 (1997)
[41] Smolen, P.; Baxter, D.; Byrne, J. H., Modeling circadian oscillations with interlocking positive and negative feedback loops, J. Neurosci., 21, 6644-6656 (2001)
[42] Tyson, J.; Hong, C.; Thron, C.; Novak, B., A simple model of circadian rhythms based on dimerization and proteolysis of PER and TIM, J. Biophys., 77, 2411-2417 (1999)
[43] Ueda, H. R.; Hagiwara, M.; Kitano, H., Robust oscillations within the interlocked feedback model of drosophila circadian rhythm, J. Theor. Biol., 210, 401-406 (2001)
[44] Wang, Z. Y.; Tobin, E. M., Constitutive expression of the circadian clock associated 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression, Cell, 93, 1207-1217 (1998)
[45] Zwolak, J.W., Tyson, J.J., Watson, L.T., 2001. Estimating rate constants in cell cycle models. Proceedings of the High Performance Computing Symposium 2001, San Diego, CA, pp. 53-57.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.