×

Streamwise velocity profile in open-channel flow based on Tsallis relative entropy. (English) Zbl 1445.76061

Summary: The present study derives the two-dimensional distribution of streamwise flow velocity in open channels using the Tsallis relative entropy, where the probability density function (PDF) based on the principle of maximum entropy (POME) is selected as the prior PDF. Here, we incorporate the moment constraints based on the normalization constraint, hydrodynamic transport of mass, and momentum through a cross section of an open channel for the formulation of the velocity profile. The minimization of the Tsallis relative entropy produces a nonlinear differential equation for velocity, which is solved using a non-perturbation approach along with the Padé approximation technique. We define two new parameters in terms of the Lagrange multipliers and the entropy index for assessing the velocity profile, which are calculated by solving a system of nonlinear equations using an optimization method. For different test cases of the flow in open channels, we consider a selected set of laboratory and river data for validating the proposed model. Besides, a comparison is made between the present model and the existing equation based on the Tsallis entropy. The study concludes that the inclusion of the POME-based prior significantly improves the velocity profile. Overall, the proposed work shows the potential of the Tsallis relative entropy in the context of application to open the channel flow velocity.
©2020 American Institute of Physics

MSC:

76M35 Stochastic analysis applied to problems in fluid mechanics
76B10 Jets and cavities, cavitation, free-streamline theory, water-entry problems, airfoil and hydrofoil theory, sloshing

Software:

BVPh
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Chow, V. T., Open-Channel Hydraulics (McGraw-Hill, 1959).
[2] Vanoni, V. A., Sedimentation Engineering (2006), American Society of Civil Engineers
[3] Prandtl, L., Bericht über untersuchungen zur ausgebildeten turbulenz, J. Appl. Math. Mech., 5, 136-139 (1925) · JFM 51.0666.08
[4] Coles, D., The law of the wake in the turbulent boundary layer, J. Fluid Mech., 1, 191-226 (1956) · Zbl 0070.42903 · doi:10.1017/S0022112056000135
[5] Guo, J.; Julien, P. Y., Modified log-wake law for turbulent flow in smooth pipes, J. Hydraul. Res., 41, 493-501 (2003) · doi:10.1080/00221680309499994
[6] Yang, S.-Q.; Lim, S.-Y.; McCorquodale, J., Investigation of near wall velocity in 3-D smooth channel flows, J. Hydraul. Res., 43, 149-157 (2005) · doi:10.1080/00221686.2005.9641231
[7] Afzal, N., “Scaling of power law velocity profile in wall-bounded turbulent shear flows,” in 43rd AIAA Aerospace Sciences Meeting and Exhibit (AIAA, 2005), p. 109.
[8] Kundu, S.; Ghoshal, K., An analytical model for velocity distribution and dip-phenomenon in uniform open channel flows, Int. J. Fluid Mech. Res., 39, 381-395 (2012) · doi:10.1615/InterJFluidMechRes.v39.i5.20
[9] Yang, S.-Q.; Tan, S.-K.; Lim, S.-Y., Velocity distribution and dip-phenomenon in smooth uniform open channel flows, J. Hydraul. Eng., 130, 1179-1186 (2004) · doi:10.1061/(ASCE)0733-9429(2004)130:12(1179)
[10] Chiu, C.-L., Entropy and probability concepts in hydraulics, J. Hydraul. Eng., 113, 583-599 (1987) · doi:10.1061/(ASCE)0733-9429(1987)113:5(583)
[11] Toffoli, T., Entropy? Honest!, Entropy, 18, 247 (2016) · doi:10.3390/e18070247
[12] Gibbs, J. W., Elementary Principles in Statistical Mechanics: 1902 (1960), Charles Scribner’s Sons: Charles Scribner’s Sons, New York · Zbl 0098.20904
[13] Shannon, C. E., A mathematical theory of communication, Bell Syst. Tech. J., 27, 379-423 (1948) · Zbl 1154.94303 · doi:10.1002/j.1538-7305.1948.tb01338.x
[14] Jaynes, E. T., Information theory and statistical mechanics, Phys. Rev., 106, 620 (1957) · Zbl 0084.43701 · doi:10.1103/PhysRev.106.620
[15] Jaynes, E. T., Information theory and statistical mechanics. II, Phys. Rev., 108, 171 (1957) · Zbl 0084.43701 · doi:10.1103/PhysRev.108.171
[16] Sterling, M.; Knight, D., An attempt at using the entropy approach to predict the transverse distribution of boundary shear stress in open channel flow, Stoch. Environ. Res. Risk Assess., 16, 127-142 (2002) · Zbl 1023.76039 · doi:10.1007/s00477-002-0088-2
[17] Araújo, J. C. D., Entropy-based equation to assess hillslope sediment production, Earth Surf. Processes Landforms, 32, 2005-2018 (2007) · doi:10.1002/esp.1502
[18] Bechle, A. J.; Wu, C. H., An entropy-based surface velocity method for estuarine discharge measurement, Water Resour. Res., 50, 6106-6128 (2014) · doi:10.1002/2014WR015353
[19] Kumbhakar, M.; Kundu, S.; Ghoshal, K., Hindered settling velocity in particle-fluid mixture: A theoretical study using the entropy concept, J. Hydraul. Eng., 143, 06017019 (2017) · doi:10.1061/(ASCE)HY.1943-7900.0001376
[20] Kumbhakar, M.; Kundu, S.; Ghoshal, K., An explicit analytical expression for bed-load layer thickness based on maximum entropy principle, Phys. Lett. A, 382, 2297-2304 (2018) · Zbl 1404.94022 · doi:10.1016/j.physleta.2018.05.045
[21] Greco, M.; Mirauda, D., Entropy parameter estimation in large-scale roughness open channel, J. Hydrol. Eng., 20, 04014047 (2014) · doi:10.1061/(ASCE)HE.1943-5584.0001009
[22] Kundu, S., Derivation of hunt equation for suspension distribution using Shannon entropy theory, Physica A, 488, 96-111 (2017) · Zbl 1514.82013 · doi:10.1016/j.physa.2017.07.007
[23] Kumbhakar, M.; Ghoshal, K.; Singh, V. P., Derivation of rouse equation for sediment concentration using Shannon entropy, Physica A, 465, 494-499 (2017) · Zbl 1400.76091 · doi:10.1016/j.physa.2016.08.068
[24] Marini, G.; De Martino, G.; Fontana, N.; Fiorentino, M.; Singh, V. P., Entropy approach for 2d velocity distribution in open-channel flow, J. Hydraul. Res., 49, 784-790 (2011) · doi:10.1080/00221686.2011.635889
[25] Singh, V. P., Entropy Theory in Hydraulic Engineering: An Introduction (2014), American Society of Civil Engineers
[26] Gholami, A.; Bonakdari, H.; Mohammadian, A., A method based on the Tsallis entropy for characterizing threshold channel bank profiles, Physica A, 526, 121089 (2019) · doi:10.1016/j.physa.2019.121089
[27] Bonakdari, H.; Sheikh, Z.; Tooshmalani, M., Comparison between Shannon and Tsallis entropies for prediction of shear stress distribution in open channels, Stoch. Environ. Res. Risk Assess., 29, 1-11 (2015) · doi:10.1007/s00477-014-0959-3
[28] Singh, V. P., Introduction to Tsallis Entropy Theory in Water Engineering (2016), CRC Press
[29] Cui, H.; Singh, V. P., Two-dimensional velocity distribution in open channels using the Tsallis entropy, J. Hydrol. Eng., 18, 331-339 (2012) · doi:10.1061/(ASCE)HE.1943-5584.0000610
[30] Cui, H.; Singh, V. P., One-dimensional velocity distribution in open channels using Tsallis entropy, J. Hydrol. Eng., 19, 290-298 (2013) · doi:10.1061/(ASCE)HE.1943-5584.0000793
[31] Luo, H.; Singh, V. P., Entropy theory for two-dimensional velocity distribution, J. Hydrol. Eng., 16, 303-315 (2010) · doi:10.1061/(ASCE)HE.1943-5584.0000319
[32] Singh, V. P.; Luo, H., Entropy theory for distribution of one-dimensional velocity in open channels, J. Hydrol. Eng., 16, 725-735 (2011) · doi:10.1061/(ASCE)HE.1943-5584.0000363
[33] Dukkipati, A.; Murty, M. N.; Bhatnagar, S., Nonextensive triangle equality and other properties of Tsallis relative-entropy minimization, Physica A, 361, 124-138 (2006) · doi:10.1016/j.physa.2005.06.072
[34] Kesavan, H.; Kapur, J., On the families of solutions to generalized maximum entropy and minimum cross-entropy problems, Int. J. Gen. Syst., 16, 199-214 (1990) · Zbl 0707.94003 · doi:10.1080/03081079008935075
[35] Waldrip, S.; Niven, R.; Abel, M.; Schlegel, M., Maximum entropy analysis of hydraulic pipe flow networks, J. Hydraul. Eng., 142, 04016028 (2016) · doi:10.1061/(ASCE)HY.1943-7900.0001126
[36] Kumbhakar, M.; Ghoshal, K.; Singh, V. P., Application of relative entropy theory to streamwise velocity profile in open-channel flow: Effect of prior probability distributions, Z. Angew. Math. Phys., 70, 80 (2019) · Zbl 1415.82006 · doi:10.1007/s00033-019-1124-0
[37] Kapur, J. N. and Kesavan, H. K., “Entropy optimization principles and their applications,” in Entropy and Energy Dissipation in Water Resources (Springer, 1992), pp. 3-20.
[38] Tsallis, C., Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys., 52, 479-487 (1988) · Zbl 1082.82501 · doi:10.1007/BF01016429
[39] Kullback, S.; Leibler, R. A., On information and sufficiency, Ann. Math. Stat., 22, 79-86 (1951) · Zbl 0042.38403 · doi:10.1214/aoms/1177729694
[40] Furuichi, S.; Yanagi, K.; Kuriyama, K., Fundamental properties of Tsallis relative entropy, J. Math. Phys., 45, 4868-4877 (2004) · Zbl 1064.82001 · doi:10.1063/1.1805729
[41] Tsallis, C., Generalized entropy-based criterion for consistent testing, Phys. Rev. E, 58, 1442 (1998) · doi:10.1103/PhysRevE.58.1442
[42] Borland, L.; Plastino, A. R.; Tsallis, C., Information gain within nonextensive thermostatistics, J. Math. Phys., 39, 6490-6501 (1998) · Zbl 0938.82001 · doi:10.1063/1.532660
[43] Prehl, J.; Essex, C.; Hoffmann, K. H., Tsallis relative entropy and anomalous diffusion, Entropy, 14, 701-716 (2012) · Zbl 1331.82006 · doi:10.3390/e14040701
[44] Chiu, C.-L.; Hsu, S.-M., Probabilistic approach to modeling of velocity distributions in fluid flows, J. Hydrol., 316, 28-42 (2006) · doi:10.1016/j.jhydrol.2005.04.011
[45] Chiu, C.-L., Entropy and 2-d velocity distribution in open channels, J. Hydraul. Eng., 114, 738-756 (1988) · doi:10.1061/(ASCE)0733-9429(1988)114:7(738)
[46] Conroy, J.; Miller, H., Determining the Tsallis parameter via maximum entropy, Phys. Rev. E, 91, 052112 (2015) · doi:10.1103/PhysRevE.91.052112
[47] Lyra, M.; Tsallis, C., Nonextensivity and multifractality in low-dimensional dissipative systems, Phys. Rev. Lett., 80, 53 (1998) · doi:10.1103/PhysRevLett.80.53
[48] Kelley, C. T., Solving Nonlinear Equations with Newton’s Method, 1 (2003), SIAM · Zbl 1031.65069
[49] Martınez, J. M., Practical quasi-Newton methods for solving nonlinear systems, J. Comput. Appl. Math., 124, 97-121 (2000) · Zbl 0967.65065 · doi:10.1016/S0377-0427(00)00434-9
[50] Nocedal, J.; Wright, S., Numerical Optimization (2006), Springer Science & Business Media · Zbl 1104.65059
[51] Gratton, S.; Lawless, A. S.; Nichols, N. K., Approximate Gauss-Newton methods for nonlinear least squares problems, SIAM J. Optim., 18, 106-132 (2007) · Zbl 1138.65046 · doi:10.1137/050624935
[52] Kumbhakar, M.; Ghoshal, K.; Singh, V. P., Two-dimensional distribution of streamwise velocity in open channel flow using maximum entropy principle: Incorporation of additional constraints based on conservation laws, Comput. Methods Appl. Mech. Eng., 361, 112738 (2019) · Zbl 1442.76090 · doi:10.1016/j.cma.2019.112738
[53] Kumbhakar, M.; Ray, R. K.; Chakraborty, S. K.; Ghoshal, K.; Singh, V. P.
[54] Baker, G. A.; Baker, G. A.; Baker, G. A.; Graves-Morris, P.; Baker, S. S., Padé Approximants, 59 (1996), Cambridge University Press · Zbl 0923.41001
[55] Liao, S.-J.
[56] Liao, S., Homotopy Analysis Method in Nonlinear Differential Equations (2012), Springer · Zbl 1253.35001
[57] Liao, S., Beyond Perturbation: Introduction to the Homotopy Analysis Method (2003), Chapman and Hall/CRC
[58] Vajravelu, K.; Van Gorder, R., Nonlinear Flow Phenomena and Homotopy Analysis (2013), Springer
[59] Einstein, H.; Chien, N., Effects of Heavy Sediment Concentration Near the Bed on Velocity and Sediment Distribution (1955), University of California: University of California, Berkeley
[60] Davoren, A., Local Scour Around a Cylindrical Bridge Pier (1985), Hydrology Centre, Ministry of Works and Development for the National Water
[61] Guy, H., “Summary of alluvial-channel data from Rio Grande experiments, 1956-61,” U.S. Geological Survey Professional Paper 462-1 (1966).
[62] Guy, Z., Southeast China Environmental Science Institute, Yuancun, China, personal communication (1990).
[63] Moramarco, T.; Singh, V. P., Simple method for relating local stage and remote discharge, J. Hydrol. Eng., 6, 78-81 (2001) · doi:10.1061/(ASCE)1084-0699(2001)6:1(78)
[64] Petz, D.; Virosztek, D., Some inequalities for quantum Tsallis entropy related to the strong subadditivity, Math. Inequalities Appl., 18, 555-568 (2015) · Zbl 1345.46052 · doi:10.7153/mia-18-41
[65] Audenaert, K. M., Subadditivity of q-entropies for \(q > 1\), J. Math. Phys., 48, 083507 (2007) · Zbl 1152.81322 · doi:10.1063/1.2771542
[66] Nave, O.; Ajadi, S.; Lehavi, Y.; Gol’dshtein, V., Comparison of the homotopy perturbation method (HPM) and method of integral manifolds (MIM) on a thermal explosion of polydisperse fuel spray system, SIAM J. Appl. Math., 73, 929-952 (2013) · Zbl 1268.80008 · doi:10.1137/120866051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.