Dekeyser, Justin Asymptotics of steady vortex pair in the lake equation. (Asymptotic of steady vortex pair in the lake equation.) (English) Zbl 1445.76030 SIAM J. Math. Anal. 51, No. 2, 1209-1237 (2019). The author considers a steady 2D Euler system for a multiconnected domain. The continuity and transport equations of incompressible fluid are added to prescribed circulations along each connected component. The asymptotic behaviour of shrinking vortex pairs is studied. The results show that each vortex is concentrated in some ball. Reviewer: Ilya A. Chernov (Petrozavodsk) Cited in 3 Documents MSC: 76B47 Vortex flows for incompressible inviscid fluids 76M45 Asymptotic methods, singular perturbations applied to problems in fluid mechanics 35Q31 Euler equations 86A05 Hydrology, hydrography, oceanography Keywords:incompressible Euler equations; singular vortex pair; desingularization; energy maximization PDF BibTeX XML Cite \textit{J. Dekeyser}, SIAM J. Math. Anal. 51, No. 2, 1209--1237 (2019; Zbl 1445.76030) Full Text: DOI References: [1] A. A. Balinsky, W. D. Evans, and R. T. Lewis, The Analysis and Geometry of Hardy’s Inequality, Universitext, Springer, Cham, 2015. · Zbl 1332.26005 [2] A. Burchard and Y. Guo, Compactness via symmetrization, J. Funct. Anal., 214 (2004), pp. 40–73. · Zbl 1065.49006 [3] G. R. Burton, Rearrangements of functions, maximization of convex functionals, and vortex rings, Math. Ann., 276 (1987), pp. 225–253. · Zbl 0592.35049 [4] G. R. Burton, Rearrangements of functions, saddle points and uncountable families of steady configurations for a vortex, Acta Math., 163 (1989), pp. 291–309. · Zbl 0695.76016 [5] G. R. Burton, Variational problems on classes of rearrangements and multiple configurations for steady vortices, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), pp. 295–319. · Zbl 0677.49005 [6] R. Camassa, D. D. Holm, and C. D. Levermore, Long-time shallow-water equations with a varying bottom, J. Fluid Mech., 349 (1997), pp. 173–189. · Zbl 0897.76008 [7] J. A. Crowe, J. A. Zweibel, and P. C. Rosenbloom, Rearrangements of functions, J. Funct. Anal., 66 (1986), pp. 432–438. · Zbl 0612.46027 [8] J. Dekeyser, Desingularization of a Steady Vortex Pair in the Lake Equation, preprint, , 2017. [9] R. J. Douglas, Rearrangements of functions on unbounded domains, Proc. Roy. Soc. Edinburgh Sect. A, 124 (1994), pp. 621–644. · Zbl 0818.49010 [10] A. R. Elcrat and K. G. Miller, Rearrangements in steady vortex flows with circulation, Proc. Amer. Math. Soc., 111 (1991), pp. 1051–1055. · Zbl 0731.35083 [11] A. Friedman and B. Turkington, Vortex rings: Existence and asymptotic estimates, Trans. Amer. Math. Soc., 268 (1981), pp. 1–37. · Zbl 0497.76031 [12] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer-Verlag, Berlin, 2001, reprint of the 1998 edition. · Zbl 1042.35002 [13] E. H. Lieb and M. Loss, Analysis, 2nd ed., Grad. Stud. Math. 14, AMS, Providence, RI, 2001. [14] G. M. Lieberman, Regularized distance and its applications, Pacific J. Math., 117 (1985), pp. 329–352. · Zbl 0535.35028 [15] C. C. Lin, On the motion of vortices in two dimensions. I. Existence of the Kirchhoff-Routh function, Proc. Natl. Acad. Sci. USA, 27 (1941), pp. 570–575. [16] C. C. Lin, On the motion of vortices in two dimensions. II. Some further investigations on the Kirchhoff-Routh function, Proc. Natl. Acad. Sci. USA, 27 (1941), pp. 575–577. · Zbl 0063.03560 [17] J. V. Ryff, Extreme points of some convex subsets of \(L^1(0,\,1)\), Proc. Amer. Math. Soc., 18 (1967), pp. 1026–1034. · Zbl 0184.34503 [18] J. V. Ryff, Orbits of \(L^1\)-functions under doubly stochastic transformations, Trans. Amer. Math. Soc., 117 (1965), pp. 92–100. [19] B. Turkington, On steady vortex flow in two dimensions. I, Comm. Partial Differential Equations, 8 (1983), pp. 999–1030. · Zbl 0523.76014 [20] B. Turkington, On steady vortex flow in two dimensions. II, Comm. Partial Differential Equations, 8 (1983), pp. 1031–1071. · Zbl 0523.76015 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.