×

Hilbert generated Banach spaces need not have a norming Markushevich basis. (English) Zbl 1445.46017

Weakly compactly generated (for short, WCG) Banach spaces (i.e., spaces with a weakly compact linearly dense subset, e.g., separable spaces, reflexive spaces, \(c_0(\Gamma)\) for every \(\Gamma\), \(L_1(\mu)\) for a \(\sigma\)-finite measure \(\mu\), \(\ldots\)) form a fundamental class in the study of general (nonseparable) Banach spaces. The presence of a kind of “coordinate system” (Schauder bases and, more generally, Markushevich (M, for short) bases) throws a strong light on the structure of the space and allows, in particular, for renormings. WCG Asplund spaces are characterized as Banach spaces admitting a shrinking M-basis (i.e., the closed linear span \(F\) of the set of all functional coefficients is the whole dual). If the supremum on the closed unit ball of \(F\) gives an equivalent norm on the space, the M-basis is said to be norming (\(1\)-norming if it gives the original norm). It has been an important open problem for fifty years whether every WCG Banach space admits a norming M-basis.
The present paper solves this problem in the negative. Amazingly, the counterexample enjoys a bunch of extra properties: it is a \(C(K)\)-space, where \(K\) ia a zero-dimensional uniform Eberlein compact, so the space is Hilbert generated – i.e., there exists a bounded linear operator from some \(\ell_2(\Gamma)\) into \(C(K)\) with dense range. The last part of the paper shows that the space \(C(\sigma_1(\Gamma)^{\omega})\) has a \(1\)-norming M-basis (here, \(\sigma_1(\Gamma)\) is the one-point compactification of a discrete set \(\Gamma\), and \(\sigma_1(\Gamma)^{\omega}\) is just the Cartesian product of \(\omega\) copies of this space). This provides a test for checking whether a compact space \(K\) is a continuous image of \(\sigma_1(\Gamma)^{\omega}\). Another consequence is that having a norming M-basis for a Banach space \(C(K)\) does not necessarily pass to \(C(L)\), where \(L\subset K\).
The paper is an extraordinary piece of delicate technical work.

MSC:

46B26 Nonseparable Banach spaces
46B10 Duality and reflexivity in normed linear and Banach spaces
46B03 Isomorphic theory (including renorming) of Banach spaces
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alexandrov, A. G.; Plichko, A., On the connection between strong and norming Markushevich bases in nonseparable Banach spaces, Mathematika, 53, 321-328 (2006) · Zbl 1139.46022
[2] Amir, D.; Lindenstrauss, J., The structure of weakly compact sets in Banach spaces, Ann. Math., 88, 35-44 (1968) · Zbl 0164.14903
[3] Argyros, S. A.; Mercourakis, S., On weakly Lindelöf Banach spaces, Rocky Mountain J. Math., 23, 395-446 (1993) · Zbl 0797.46009
[4] Argyros, S. A.; Mercourakis, S.; Negrepontis, S., Functional-analytic properties of Corson-compact spaces, Studia Math., 89, 197-229 (1988) · Zbl 0656.46014
[5] Aviles, A., The unit ball of the Hilbert space in its weak topology, Proc. Amer. Math. Soc., 135, 833-836 (2007) · Zbl 1119.46021
[6] Bell, M., A Ramsey theorem for polyadic spaces, Fund. Math., 150, 189-195 (1996) · Zbl 0890.54020
[7] Benyamini, Y.; Rudin, M. E.; Wage, M., Continuous images of weakly compact subsets of Banach spaces, Pacific J. Math., 70, 309-324 (1977) · Zbl 0374.46011
[8] Davis, W. J.; Figiel, T.; Johnson, W. B.; Pelczynski, A., Factoring weakly compact operators, J. Funct. Anal., 17, 311-327 (1974) · Zbl 0306.46020
[9] Deville, R.; Godefroy, G.; Zizler, V., Smoothness and Renormings in Banach Spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 64 (1993) · Zbl 0782.46019
[10] Engelking, R., General Topology (1989), Helderman Verlag · Zbl 0684.54001
[11] Fabian, M., Gâteaux Differentiability of Convex Functions and Topology - Weak Asplund Spaces (1997), John Wiley & Sons, Interscience: John Wiley & Sons, Interscience New York · Zbl 0883.46011
[12] Fabian, M.; Godefroy, G.; Hájek, P.; Zizler, V., Hilbert-generated spaces, J. Funct. Anal., 200, 301-323 (2003) · Zbl 1039.46015
[13] Fabian, M.; Godefroy, G.; Zizler, V., The structure of uniformly Gâteaux smooth Banach spaces, Israel J. Math., 124, 243-252 (2001) · Zbl 1027.46012
[14] Fabian, M.; Hájek, P.; Montesinos, V.; Zizler, V., Weakly compact generating and shrinking M-bases, Serdica Math. J., 32, 277-288 (2006) · Zbl 1199.46053
[15] Fabian, M.; Habala, P.; Hájek, P.; Montesinos, V.; Zizler, V., Banach Space Theory. The Basis for Linear and Nonlinear Analysis, CMS Books in Mathematics (2011), Springer: Springer New York · Zbl 1229.46001
[16] Godefroy, G., Decomposable Banach spaces, Rocky Mountain J. Math., 25, 1013-1024 (1995) · Zbl 0843.46011
[17] Guirao, A.; Montesinos, V.; Zizler, V., Open Problems in the Geometry and Analysis of Banach Spaces (2016), Springer · Zbl 1351.46001
[18] Hájek, P.; Montesinos, V.; Vanderwerff, J.; Zizler, V., Biorthogonal Systems in Banach Spaces, CMS Books in Mathematics (2008), Springer · Zbl 1136.46001
[19] Johnson, W. B.; Lindenstrauss, J., Some remarks on weakly compactly generated Banach spaces, Israel J. Math., 17, 219-230 (1974) · Zbl 0306.46021
[20] John, K.; Zizler, V., Some remarks on nonseparable Banach spaces with Markushevich basis, Comment. Math. Univ. Carolin., 15, 679-691 (1974) · Zbl 0291.46010
[21] John, K.; Zizler, V., Some notes on Markushevich bases in weakly compactly generated Banach spaces, Compos. Math., 35, 113-123 (1977) · Zbl 0358.46014
[22] Kalenda, O., M-bases in spaces of continuous functions on ordinals, Collect. Math., 92, 179-187 (2002) · Zbl 1029.46006
[23] Orihuela, J., On weakly Lindelöf Banach spaces, (Bierstedt, K. D.; Bonet, J.; Horváth, J.; Maestre, M., Progress in Funct. Anal. (1992), Elsevier Science Publ. B.V.) · Zbl 0789.46015
[24] Orihuela, J.; Valdivia, M., Projective generators and resolutions of identity in Banach spaces, Rev. Mat. Univ. Complut. Madr., 2, 179-199 (1989) · Zbl 0717.46009
[25] Plichko, A. N., On projective resolutions of the identity operator and Markushevich bases, Sov. Math., Dokl., 25, 386-389 (1982) · Zbl 0531.46010
[26] Rosenthal, H., The heredity problem for weakly compactly generated Banach spaces, Compos. Math., 28, 83-111 (1974) · Zbl 0298.46013
[27] Talagrand, M., Espaces de Banach faiblement K-analytiques, Ann. of Math., 119, 407-438 (1979) · Zbl 0393.46019
[28] Valdivia, M., Projective resolutions of identity in \(C(K)\) spaces, Arch. Math., 54, 493-498 (1990) · Zbl 0707.46009
[29] Valdivia, M., On certain classes of Markushevich basis, Arch. Math., 62, 445-458 (1994) · Zbl 0808.46010
[30] Vanderwerff, J., Extensions of Markusevic bases, Math. Z., 219, 21-30 (1995) · Zbl 0823.46014
[31] Vanderwerff, J.; Whitfield, J. H.M.; Zizler, V., Markusevic bases and Corson compacta in duality, Canad. J. Math., 46, 200-211 (1994) · Zbl 0802.46025
[32] Zizler, V., Nonseparable Banach spaces, (Johnson, W. B.; Lindenstrauss, J., Handbook of the Geometry of Banach Spaces, vol. 2 (2003)) · Zbl 1041.46009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.