zbMATH — the first resource for mathematics

Attractor sets and Julia sets in low dimensions. (English) Zbl 1445.30014
Let \(j \in \{1,2\}\), and let \(X\) be a conformal iterated function system generated by contractions \(\varphi_1, \ldots, \varphi_m\) acting on the closed unit ball of \(\mathbb{R}^j\) and so that at least two of the maps generating \(X\) have distinct fixed points. The main theorem states that if the images of the open unit ball \(\mathbb{B}^j\) under \(\varphi_1, \ldots, \varphi_m\) are quasiballs contained relatively compact in \(\mathbb{B}^j\), then there exists a quasiregular semigroup \(G\) acting on \(\mathbb{R}^j\) so that the Julia set of \(G\) equals the attractor set of \(X\). Moreover, it is shown that in \(2D\) every \(X\) which satisfies the strong open set condition (that is, the closures of \(\varphi_i(\mathbb{B}^2)\), \(i=1, \ldots, m\), are pairwise disjoint and contained in \(\mathbb{B}^2\)), there exists a uniformly quasiregular map \(f :\mathbb{C} \to \mathbb{C}\) with Julia set equal to the attractor set of \(X\). As a consequence, in this case the attractor set of \(X\) is quasiconformally equivalent to the Julia set of a rational map.
30D05 Functional equations in the complex plane, iteration and composition of analytic functions of one complex variable
30C62 Quasiconformal mappings in the complex plane
30C65 Quasiconformal mappings in \(\mathbb{R}^n\), other generalizations
37F05 Dynamical systems involving relations and correspondences in one complex variable
Full Text: DOI arXiv
[1] Berstein, Israel; Edmonds, Allan L., On the construction of branched coverings of low-dimensional manifolds, Trans. Amer. Math. Soc., 247, 87-124, (1979) · Zbl 0359.55001
[2] Bishop, Christopher J.; Pilgrim, Kevin M., Dynamical dessins are dense, Rev. Mat. Iberoam., 31, 3, 1033-1040, (2015) · Zbl 1345.37043
[3] Douady, Adrien; Earle, Clifford J., Conformally natural extension of homeomorphisms of the circle, Acta Math., 157, 1-2, 23-48, (1986) · Zbl 0615.30005
[4] \bibFalconerbook author=Falconer, Kenneth, title=Fractal geometry, edition=3, pages=xxx+368, publisher=John Wiley & Sons, Ltd., Chichester, date=2014, note=Mathematical foundations and applications, isbn=978-1-119-94239-9, review=\MR3236784,
[5] Fletcher, Alastair, Quasiregular semigroups with examples, Discrete Contin. Dyn. Syst., 39, 4, 2157-2172, (2019) · Zbl 1429.30026
[6] FM A. Fletcher and D. Macclure, Strongly automorphic mappings and Julia sets of uniformly quasiregular mappings, to appear in J. Anal. Math.
[7] Fletcher, Alastair N.; Nicks, Daniel A., Quasiregular dynamics on the \(n\)-sphere, Ergodic Theory Dynam. Systems, 31, 1, 23-31, (2011) · Zbl 1209.37051
[8] Fletcher, Alastair N.; Nicks, Daniel A., Julia sets of uniformly quasiregular mappings are uniformly perfect, Math. Proc. Cambridge Philos. Soc., 151, 3, 541-550, (2011) · Zbl 1235.37014
[9] Fletcher, Alastair; Wu, Jang-Mei, Julia sets and wild Cantor sets, Geom. Dedicata, 174, 169-176, (2015) · Zbl 1344.30023
[10] Hare, Kevin G.; Sidorov, Nikita, Two-dimensional self-affine sets with interior points, and the set of uniqueness, Nonlinearity, 29, 1, 1-26, (2016) · Zbl 1334.28019
[11] Hinkkanen, A., Uniformly quasiregular semigroups in two dimensions, Ann. Acad. Sci. Fenn. Math., 21, 1, 205-222, (1996) · Zbl 0856.30017
[12] Hinkkanen, A.; Martin, G. J., The dynamics of semigroups of rational functions. I, Proc. London Math. Soc. (3), 73, 2, 358-384, (1996) · Zbl 0859.30026
[13] Hutchinson, John E., Fractals and self-similarity, Indiana Univ. Math. J., 30, 5, 713-747, (1981) · Zbl 0598.28011
[14] Iwaniec, Tadeusz; Martin, Gaven, Quasiregular semigroups, Ann. Acad. Sci. Fenn. Math., 21, 2, 241-254, (1996) · Zbl 0860.30019
[15] Iwaniec, Tadeusz; Martin, Gaven, Geometric function theory and non-linear analysis, Oxford Mathematical Monographs, xvi+552 pp., (2001), The Clarendon Press, Oxford University Press, New York · Zbl 1045.30011
[16] Milnor, John, Dynamics in one complex variable, Annals of Mathematics Studies 160, viii+304 pp., (2006), Princeton University Press, Princeton, NJ · Zbl 1085.30002
[17] Lindsey, Kathryn A., Shapes of polynomial Julia sets, Ergodic Theory Dynam. Systems, 35, 6, 1913-1924, (2015) · Zbl 1343.37028
[18] Lindsey, Kathryn A.; Younsi, Malik, Fekete polynomials and shapes of Julia sets, Trans. Amer. Math. Soc., 371, 12, 8489-8511, (2019) · Zbl 1441.30054
[19] Rickman, Seppo, Quasiregular mappings, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)] 26, x+213 pp., (1993), Springer-Verlag, Berlin · Zbl 0816.30017
[20] Stankewitz, Rich, Uniformly perfect analytic and conformal attractor sets, Bull. London Math. Soc., 33, 3, 320-330, (2001) · Zbl 1046.37034
[21] Sullivan, Dennis, Hyperbolic geometry and homeomorphisms. Geometric topology (Proc. Georgia Topology Conf., Athens, Ga., 1977), 543-555, (1979), Academic Press, New York-London
[22] Sullivan, Dennis, On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions. Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference, State Univ. New York, Stony Brook, N.Y., 1978, Ann. of Math. Stud. 97, 465-496, (1981), Princeton Univ. Press, Princeton, N.J.
[23] Tukia, Pekka, On two-dimensional quasiconformal groups, Ann. Acad. Sci. Fenn. Ser. A I Math., 5, 1, 73-78, (1980) · Zbl 0411.30038
[24] Tukia, P.; V\`‘ais\'’al\"a, J., Lipschitz and quasiconformal approximation and extension, Ann. Acad. Sci. Fenn. Ser. A I Math., 6, 2, 303-342 (1982), (1981) · Zbl 0448.30021
[25] Xie, Feng; Yin, Yongcheng; Sun, Yeshun, Uniform perfectness of self-affine sets, Proc. Amer. Math. Soc., 131, 10, 3053-3057, (2003) · Zbl 1027.28012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.