×

zbMATH — the first resource for mathematics

Competitive equilibria in Shapley-Scarf markets with couples. (English) Zbl 1444.91133
Summary: We investigate the existence and properties of competitive equilibrium in Shapley-Scarf markets involving an exogenous partition of individuals into couples. The presence of couples generates preference interdependencies which cause existence problems. For both cases of transferable and non-transferable income among partners, we establish properties for preferences that are sufficient for the existence of an equilibrium. Moreover, we show that these properties define a maximal preference domain.
MSC:
91B52 Special types of economic equilibria
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abdulkadiroğlu, A.; Sönmez, T., House allocation with existing tenants, J. Econom. Theory, 88, 2, 233-260 (1999) · Zbl 0939.91068
[2] Aslan, F., Essays on Allocation Procedures of Indivisibles (2019), Paris, CNAM
[3] Aumann, R. J.; Peleg, B., Von Neumann-Morgenstern solutions to cooperative games without side payments, Bull. Amer. Math. Soc., 66, 3, 173-179 (1960) · Zbl 0096.14706
[4] Bando, K., Many-to-one matching markets with externalities among firms, J. Math. Econom., 48, 1, 14-20 (2012) · Zbl 1236.91096
[5] Bando, K., A modified deferred acceptance algorithm for many-to-one matching markets with externalities among firms, J. Math. Econom., 52, 173-181 (2014) · Zbl 1297.91096
[6] Bando, K.; Kawasaki, R.; Muto, S., Two-sided matching with externalities: A survey, J. Oper. Res. Soc. Japan, 59, 1, 35-71 (2016) · Zbl 1349.91197
[7] Bird, C. G., Group incentive compatibility in a market with indivisible goods, Econom. Lett., 14, 4, 309-313 (1984)
[8] Biró, P.; Irving, R. W.; Schlotter, I., Stable matching with couples: an empirical study, J. Exp. Algorithmics, 16, 1-2 (2011) · Zbl 1284.91416
[9] Cantala, D., Matching markets: the particular case of couples, Econ. Bull., 3, 45, 1-11 (2004)
[10] Cechlárová, K., On the complexity of the shapley-scarf economy with several types of goods, Kybernetika, 45, 5, 689-700 (2009) · Zbl 1200.91027
[11] Chander, P.; Tulkens, H., The core of an economy with multilateral environmental externalities, Internat. J. Game Theory, 26, 3, 379-401 (1997) · Zbl 0880.90019
[12] Doğan, O.; Laffond, G.; Lainé, J., The core of Shapley-Scarf markets with couples, J. Math. Econom., 47, 1, 60-67 (2011) · Zbl 1211.91030
[13] Dutta, B.; Massó, J., Stability of matchings when individuals have preferences over colleagues, J. Econom. Theory, 75, 2, 464-475 (1997) · Zbl 0892.90049
[14] Echenique, F.; Yenmez, M. B., A solution to matching with preferences over colleagues, Games Econom. Behav., 59, 1, 46-71 (2007) · Zbl 1271.91084
[15] Emmerson, R. D., Optima and market equilibria with indivisible commodities, J. Econom. Theory, 5, 2, 177-188 (1972)
[16] Emmerson, R. D., Optima and market equilibria with indivisible commodities, J. Econom. Theory, 5, 2, 177-188 (1972)
[17] Fisher, J. C.; Hafalir, I. E., Matching with aggregate externalities, Math. Social Sci., 81, 1-7 (2016) · Zbl 1347.91204
[18] Hafalir, I. E., Stability of marriage with externalities, Internat. J. Game Theory, 37, 3, 353-369 (2008) · Zbl 1153.91689
[19] Hart, S.; Kurz, M., Endogenous formation of coalitions, Econometrica, 1047-1064 (1983) · Zbl 0523.90097
[20] Hong, M.; Park, J., Core and top trading cycles in a market with indivisible goods and externalities (2018)
[21] Klaus, B.; Klijn, F., Stable matchings and preferences of couples, J. Econom. Theory, 121, 1, 75-106 (2005) · Zbl 1098.91092
[22] Klaus, B.; Klijn, F.; Massó, J., Some things couples always wanted to know about stable matchings (but were afraid to ask), Rev. Econ. Des., 11, 3, 175-184 (2007) · Zbl 1136.91542
[23] Konishi, H.; Quint, T.; Wako, J., On the shapley-scarf economy: the case of multiple types of indivisible goods, J. Math. Econom., 35, 1, 1-15 (2001) · Zbl 1007.91036
[24] Ma, J., Strategy-proofness and the strict core in a market with indivisibilities, Internat. J. Game Theory, 23, 1, 75-83 (1994) · Zbl 0804.90014
[25] Massand, S.; Simon, S., Graphical one-sided markets, (Proceedings of the 28th International Joint Conference on Artificial Intelligence (2019), AAAI Press), 492-498
[26] Mumcu, A.; Saglam, I., Stable one-to-one matchings with externalities, Math. Social Sci., 60, 2, 154-159 (2010) · Zbl 1232.91534
[27] Pápai, S., Strategyproof exchange of indivisible goods, J. Math. Econom., 39, 8, 931-959 (2003) · Zbl 1054.91032
[28] Pycia, M., Stability and preference alignment in matching and coalition formation, Econometrica, 80, 1, 323-362 (2012) · Zbl 1274.91332
[29] Pycia, M.; Yenmez, M. B., Matching with Externalities (2014), Citeseer
[30] Roth, A. E., Incentive compatibility in a market with indivisible goods, Econ. Lett., 9, 2, 127-132 (1982) · Zbl 0722.90009
[31] Roth, A. E.; Peranson, E., The redesign of the matching market for american physicians: Some engineering aspects of economic design, Amer. Econ. Rev., 89, 4, 748-780 (1999)
[32] Roth, A. E.; Postlewaite, A., Weak versus strong domination in a market with indivisible goods, J. Math. Econom., 4, 2, 131-137 (1977) · Zbl 0368.90025
[33] Roth, A. E.; Sotomayor, M., (Two-Sided Matching: A Study in Game-theoretic Modeling and Analysis. Two-Sided Matching: A Study in Game-theoretic Modeling and Analysis, Econometric Society Monograph Series (1990), Cambridge Univ, Press: Cambridge Univ, Press New York) · Zbl 0726.90003
[34] Sasaki, H.; Toda, M., Two-sided matching problems with externalities, J. Econom. Theory, 70, 1, 93-108 (1996) · Zbl 0859.90011
[35] Shapley, L.; Scarf, H., On cores and indivisibility, J. Math. Econom., 1, 1, 23-37 (1974) · Zbl 0281.90014
[36] Sönmez, T., Implementation in generalized matching problems, J. Math. Econom., 26, 4, 429-439 (1996) · Zbl 0876.90012
[37] Sönmez, T., Strategy-proofness and essentially single-valued cores, Econometrica, 67, 3, 677-689 (1999) · Zbl 1021.91036
[38] Wako, J., A note on the strong core of a market with indivisible goods, J. Math. Econom., 13, 2, 189-194 (1984) · Zbl 0563.90013
[39] Wako, J., Some properties of weak domination in an exchange market with indivisible goods, Econ. Stud. Q., 42, 4, 303-314 (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.