Linearized analysis of barotropic perturbations around spherically symmetric gaseous stars governed by the Euler-Poisson equations. (English) Zbl 1444.76057

Summary: The hydrodynamic evolution of self-gravitating gaseous stars is governed by the Euler-Poisson equations. We study the structure of the linear approximation of barotropic perturbations around spherically symmetric equilibria based on functional analytic tools. In contrast to folklore, we show that the spectrum of the linearized operator for general perturbations is not of the Sturm-Liouville type unless the perturbations are restricted. Among others, we prove that it is of the Sturm-Liouville type for irrotational perturbations.
©2020 American Institute of Physics


76E20 Stability and instability of geophysical and astrophysical flows
85A30 Hydrodynamic and hydromagnetic problems in astronomy and astrophysics
35Q35 PDEs in connection with fluid mechanics
Full Text: DOI arXiv


[1] Chandrasekhar, S., An Introduction to the Study of Stellar Structure (1936), University Chicago Press · Zbl 0022.19207
[2] Joseph, D. D.; Lindgren, T. S., Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal., 49, 241-269 (1973) · Zbl 0266.34021
[3] Makino, T., On the existence of positive solutions at infinity for ordinary differential equations of Emden type, Funkcialaj Ekvacioj, 27, 319-329 (1984) · Zbl 0579.34026
[4] Ledoux, P.; Walraven, Th., Variable stars, Handbuch der Physik, Band LI: Sternaufbau (1958), Springer: Springer, Berlin, Göttingen, Heidelberg
[5] Batchelor, G. K., An Introduction to Fluid Dynamics (1967), Cambridge, University Press · Zbl 0152.44402
[6] Lynden-Bell, D.; Ostriker, J. P., On the stability of differentially rotating bodies, Mon. Not. Astr. Soc., 136, 293-310 (1967) · Zbl 0168.23205
[7] Lebovitz, N. R., The virial tensor and its application to self-gravitating fluids, Astrophys. J., 134, 500-536 (1961)
[8] Chandrasekhar, S., A general variational principle governing the radial and the non-radial oscillations of gaseous masses, Astrophys. J., 139, 664-674 (1964) · Zbl 0151.47403
[9] Gough, D. O.; Zahn, J.-P., Liner adiabatic stellar pulsation, Les Houches, Session XVII, 1987, Dynamique des Fluides Astrophysiques, 399-560 (1993), North-Holland: North-Holland, Amsterdam, London, NY, Tokyo · Zbl 0832.76081
[10] Tassoul, J.-L., Stellar Rotation (2000), Cambridge University Press: Cambridge University Press, Cambridge · Zbl 1009.85004
[11] Beyer, H. R., The spectrum of radial adiabatic stellar oscillations, J. Math. Phys., 36, 4815-4825 (1995) · Zbl 0871.47014
[12] Lin, S.-S., Stability of gaseous stars in spherically symmetric motions, SIAM J. Math., 28, 539-569 (1997) · Zbl 0871.35012
[13] Beyer, H. R.; Schmidt, B. G., Newtonian strellar oscillations, Astron. Astrophys., 296, 722-726 (1995)
[14] Kato, T., Perturbation Theory for Linear Operators (1980), Springer
[15] Makino, T., On spherically symmetric motions of a gaseous star governed by the Euler-Poisson equations, Osaka J. Math., 52, 545-580 (2015) · Zbl 1323.35180
[16] Courant, R.; Hilbert, D., Methoden der Mathematischen Physik, Zweiter Band (1937), Springer · JFM 63.0449.05
[17] Davies, E. B., Spectral Theory and Differential Operators (1995), Cambridge University Press · Zbl 0893.47004
[18] Helffer, B., Spectral Theory and its Applications (2013), Cambridge University Press
[19] Gurka, P.; Opic, B., Continuous and compact imbeddings of weighted Sobolev spaces. I, Czech. Math. J., 38, 730-744 (1988) · Zbl 0676.46030
[20] Kufner, A., Weighted Sobolev Spaces (1985), A Wiley-Interscience Publication; John Wiley & Sons, Inc.: A Wiley-Interscience Publication; John Wiley & Sons, Inc., New York
[21] Gurka, P.; Opic, B., Continuous and compact imbeddings of weighted Sobolev spaces. II, Czech. Math. J., 39, 78-94 (1989) · Zbl 0669.46019
[22] Jang, J., Nonlinear instability theory of Lane-Emden stars, Commun. Pure Appl. Math., 67, 1418-1465 (2014) · Zbl 1309.35080
[23] Jackson, J. D., Classical Electrodynamics (1962), Wiley: Wiley, NY
[24] Birkhoff, G.; Rota, G.-C., Ordinary Differential Equations (1978), John Wiley & Sons: John Wiley & Sons, NY · Zbl 0183.35601
[25] Reed, M.; Simon, B., Methods of Modern Mathematical Physics, II. Fourier Analysis, Self-Adjointness (1975), Academic Press: Academic Press, NY · Zbl 0308.47002
[26] Gilbarg, D.; Trudinger, N. S., Elliptic Partial Differential Eqiuations of Second Order (1998), Sprnger
[27] Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability (1961), Clarendon Press: Clarendon Press, Oxford
[28] Schmitt, B. J., The poloidal-toroidal representation of solenoidal fields in spherical domains, Analysis, 15, 257-277 (1995) · Zbl 0835.46022
[29] Jang, J.; Makino, T., On rotating axisymmetric solutions of the Euler-Poisson equations, J. Differ. Equations, 266, 3942-3972 (2019) · Zbl 1406.35280
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.