×

A computational study on spiral blood flow in stenosed arteries with and without an upstream curved section. (English) Zbl 1443.76039

Summary: Spiral and non-spiral blood flows through three-dimensional models of 75% axisymmetric arterial stenosis are investigated by using two-equation standard \( k-\omega\) transitional model and Large Eddy Simulation (LES). The arterial stenosis models chosen are straight stenosed tubes without and with upstream curved segments of various angles of curvature. The Reynolds numbers investigated are 500, 1000, 1500 and 2000. Spiral effect is introduced by taking one-sixth of the bulk velocity as a tangential velocity at the inlet, and the inlet turbulence intensity was introduced for matching experimental results. LES results with a right amount of inlet turbulence intensity matches experimental results better than the \( k-\omega\) results. The results show that the spiral flow affects the turbulence kinetic energy in the post stenosis region. Other important results such as the wall pressure and shear stress remain almost unchanged by the spiral velocity. But the presence of the upstream curved segment in artery moderately affects the results of the maximum pressure drop and wall shear stress.

MSC:

76-10 Mathematical modeling or simulation for problems pertaining to fluid mechanics
76Z05 Physiological flows
92-10 Mathematical modeling or simulation for problems pertaining to biology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Stonebridge, P. A.; Brophy, C. M., Spiral laminar flow in arteries?, The Lancet, 338, 1360-1361 (1991)
[2] Stonebridge, P. A.; Hoskins, P. R.; Allan, P. L.; Belch, J. F.F., Spiral laminar flow in vivo, Clin. Sci., 91, 17-21 (1996)
[3] Stonebridge, P. A.; Buckley, C.; Thompson, A.; Dick, J.; Hunter, G.; Chudek, J. A.; Houston, J. G.; Belch, J. J.F., Non spiral and spiral (helical) flow patterns in stenoses—in vitro observations using spin and gradient echo magnetic resonance imaging (mri) and computational fluid dynamic modeling, Int. Angiol., 23, 3, 276-283 (2004)
[4] Paul, M. C.; Larman, A., Investigation of spiral blood flow in a model of arterial stenosis, Med. Eng. Phys., 31, 1195-1203 (2009)
[5] Deshpande, M. D.; Giddens, D. P., Turbulence measurements in a constricted tube, J. Fluid Mech., 97, 65-89 (1979)
[6] Ghalichi, F.; Deng, X.; De Champlain, A.; Douville, Y.; King, M.; Guidoin, R., Low Reynolds number turbulence modeling of blood flow in arterial stenoses, Biorheology, 35, 4-5, 281-294 (1998)
[7] Varghese, S. S.; Frankel, S. H., Numerical Modeling of pulsatile turbulent flow in stenotic vessels, ASME J. Biomech. Eng., 125, 445-460 (2003)
[8] Lee, T. S.; Liao, W.; Low, H. T., Numerical simulation of turbulent flow through series stenoses, Int. J. Numer. Meth. Fluids, 42, 717-740 (2003) · Zbl 1143.76608
[9] Lee, T. S.; Liao, W.; Low, H. T., Numerical study of physiological turbulent flows through series arterial stenoses, Int. J. Numer. Meth. Fluids, 46, 315-344 (2004) · Zbl 1060.76669
[10] Li, M. X.; Beech-Brandt, J. J.; John, L. R.; Hoskins, P. R.; Easson, W. J., Numerical Analysis of pulsatile blood flow and vessel wall mechanics in different degrees of stenoses, J. Biomech., 40, 3715-3724 (2007)
[11] Varghese, S. S.; Frankel, S. H.; Fischer, P. F., Modelling transition to turbulence in eccentric stenotic flows, ASME J. Biomech. Eng., 130 (2008), 0145031-7
[12] Paul, M. C.; Molla, M. M.; Roditi, G., Large-eddy simulation of pulsatile blood flow, Med. Eng. Phys., 31, 153-159 (2009)
[13] Molla, M. M.; Paul, M. C.; Roditi, G., LES of additive and non-additive pulsatile flows in a model arterial stenosis, Comput. Methods Biomech. Biomed. Eng., 13, 1, 105-120 (2010)
[14] Molla, M. M.; Paul, M. C., LES of non-newtonian physiological blood flow in a model of arterial stenosis, Med. Eng. Phys., 34, 1079-1087 (2012)
[15] Paul, M. C.; Molla, M. M., Investigation of physiological pulsatile flow in a model of arterial stenosis using large-eddy and direct numerical simulations, Appl. Math. Modell., 36, 4393-4413 (2012) · Zbl 1252.76095
[16] Tan, F. P.P.; Wood, N. B.; Tabor, G.; Xu, X. Y., Comparison of LES of steady transitional flow in an idealized stenosed axisymmetric artery model with a RANS transitional model, ASME J. Biomech. Eng., 133 (2011), 0510011-12
[17] Ga˚rdhagen, R.; Lantz, J.; Carlsson, F.; Karlsson, M., Large eddy simulation of stenotic flow for wall shear stress estimation - validation and application, WSEAS Trans. Biol. Biomed., 8, 3, 86-99 (2011)
[18] Barber, T. J.; Simmons, A., Large eddy simulation of a stenosed artery using a femoral artery pulsatile flow profile, Artif. Organs, 35, 7, E155-E160 (2011)
[19] Germano, M.; Piomelli, U.; Cabot, W., A dynamic subgrid-scale eddy viscosity model, Phys. Fluids A, 3, 7, 1760-1765 (1991) · Zbl 0825.76334
[20] Lilly, D. K., A Proposed Modification of the Germano Subgrid-Scale Closure Method, Phys. Fluids A, 4, 3, 633-635 (1992)
[22] Ahmed, S. A.; Giddens, D. P., Flow disturbance measurements through a constricted tube at moderate Reynolds numbers, J. Biomech., 16, 12, 955-963 (1983)
[23] Ahmed, S. A.; Giddens, D. P., Velocity measurement in steady flow through axisymmetric stenosis at moderate Reynolds number, J. Biomech., 16, 7, 505-516 (1983)
[24] Young, D. F., Fluid mechanics of arterial stenoses, ASME J. Biomech. Eng., 101, 157-173 (1979)
[25] Ku, D. N., Blood flows in arteries, Annu. Rev. Fluid Mech., 29, 399-434 (1997)
[26] Pedley, T. J., The Fluid Mechanics of Large Blood Vessels (1980), Cambridge University Press · Zbl 0449.76100
[27] Fung, Y. C., Biomechanics: Circulation (1997), Springer
[29] Ryval, J.; Straatman, A. G.; Steinman, D. A., Two-equation turbulence modelling of pulsatile flow in a stenosed tube, ASME J. Biomech. Eng., 126, 625-635 (2004)
[30] Vandoormaal, J. P.; Raithby, G. D., Enhancements of the simple method for predicting incompressible fluid flows, Numer. Heat Transfer, 7, 147-163 (1984) · Zbl 0553.76005
[31] Issa, R. I., Solution of implicitly discretized fluid flow equations by operator splitting, J. Comput. Phys., 62, 40-65 (1986) · Zbl 0619.76024
[32] Rhie, C. M.; Chow, W. L., Numerical study of the turbulent flow past an airfoil with trailing edge separation, AIAA J., 21, 11, 1525-1532 (1983) · Zbl 0528.76044
[33] Frydrychowicz, A.; Harloff, A.; Jung, B.; Zaitsev, M.; Eigang, E. W.; Bley, T. A.; Langer, M.; Henning, J.; Markl, M., Time-resolved, 3-Dimensional magnetic resonance flow analysis at 3 T: visualization of normal and pathological aortic vascular hemodynamics, J. Comput. Assist. Tomogr., 31, 1, 9-15 (2007)
[34] Wootton, D. M.; Ku, D. N., Fluid mechanics of vascular systems, diseases, and thrombosis, Annu. Rev. Biomed. Eng., 01, 299-329 (1999)
[35] Li, Z.-Y.; Taviani, V.; Tang, T.; Sadat, U.; Young, V.; Patterson, A.; Graves, M.; Gillard, J. H., The mechanical triggers of plaque rupture: shear stress vs pressure gradient, Br. J. Radiol., 82, S39-S45 (2009)
[36] Malek, A. M.; Alper, S. L.; Izumo, S., Hemodynamic shear stress and its role in atherosclerosis, J. Am. Med. Assoc. (JAMA), 282, 2035-2042 (1999)
[37] Fry, D. L., Acute vascular endothelial changes associated with increased blood velocity gradients, Circul. Res., 22, 165-197 (1968)
[38] Folts, J. D.; Crowell, E. B.; Rowe, G. G., Platelet aggregation in partially obstructed vessels and its elimination with aspirin, Circulation, 54, 3, 365-370 (1976)
[39] Sutera, S. P.; Mehrjardi, M. H., Deformation and fragmentation of human red blood cells in turbulent flow, Biophys. J., 15, 1-10 (1975)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.