×

Variational multiscale interpolating element-free Galerkin method for the nonlinear Darcy-Forchheimer model. (English) Zbl 1443.65382

Summary: In this paper, the variational multiscale interpolating element-free Galerkin (VMIEFG) method is developed to obtain the numerical solution ofthenonlinearDarcy-Forchheimer model. We use the interpolating moving least squares method instead of the moving least squares approximation to construct meshless shape functions with delta function properties. Then the flux boundary condition of the Darcy-Forchheimer model can be handled easily. Hughes’ variational multiscale (HVM) method is applied to overcome the numerical oscillation caused by equal-order basis for the velocity and pressure. Moreover, the HVM ensures that the resultant formulation in the VMIEFG method is consistent and the stabilization parameter (or tensor) appears naturally. Consequently, the stabilization parameter is free of user-defined. The fixed point iteration method is used to deal with the nonlinear term. Some numerical examples are provided to illustrate the stability and performance of the proposed method for solving the nonlinear Darcy-Forchheimer model.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Forchheimer, P. H., Wasserbewegung durch boden, Zeitz. Ver. Duetch. Ing., 45, 1782-1788 (1901)
[2] Amao, A. M., Mathematical Model for Darcy Forchheimer Flow with Applications to Well Performance Analysis (2007), Texas Tech University, (Dissertation)
[3] Girault, V.; Wheeler, M. F., Numerical discretization of a Darcy-Forchheimer model, Numer. Math., 110, 2, 161-198 (2008) · Zbl 1143.76035
[4] López, H.; Molina, B.; Sala, J. J., Comparison between different numerical discretizations for a Darcy-Forchheimer model, Electron. T. Numer. Anal, 34, 187-203 (2009) · Zbl 1185.35193
[5] Pan, H.; Rui, H. X., Mixed element method for two-dimensional Darcy-Forchheimer model, J. Sci. Comput., 52, 3, 563-587 (2012) · Zbl 1326.76065
[6] Sun, M.; Rui, H. X., A two-grid stabilized mixed finite element method for Darcy-Forchheimer model, Numer. Methods Partial Differential Equations, 34, 686-704 (2018) · Zbl 1388.76152
[7] Mattis, S. A., Mathematical Modeling of Flow Through Vegetated Regions (2013), University of Texas: University of Texas Austin, (Ph.D. dissertation)
[8] Rui, H.; Pan, H. X., A block-centered finite difference method for the Darcy-Forchheimer model, SIAM J. Numer. Anal., 50, 5, 2612-2631 (2012) · Zbl 1255.76089
[9] Rui, H. X.; Liu, W., A two-grid block-centered finite difference method for Darcy-Forchheimer flow in porous media, SIAM J. Numer. Anal., 53, 4, 1941-1962 (2015) · Zbl 1327.65214
[10] Rui, H. X.; Zhao, D. H.; Pan, H., A block-centered finite difference method for Darcy-Forchheimer model with variable Forchheimer number, Numer. Methods Partial Differential Equations, 31, 5, 1603-1622 (2015) · Zbl 1338.76090
[11] Cheng, Y. M., Meshless Methods (2015), Science Press: Science Press Beijing
[12] Li, J. P.; Chen, W.; Qin, Q. H.; Fu, Z. J., A modified multilevel algorithm for large-scale scientific and engineering computing, Comput. Math. Appl., 77, 2061-2076 (2019) · Zbl 1442.65429
[13] Fu, Z. J.; Xi, Q.; Chen, W.; Cheng, A. H.D., A boundary-type meshless solver for transient heat conduction analysis of slender functionally graded materials with exponential variations, Comput. Math. Appl., 76, 760-773 (2018) · Zbl 1430.65009
[14] Wang, F. J.; Liu, C. S.; Qu, W. Z., Optimal sources in the MFS by minimizing a new merit function: Energy gap functional, Appl. Math. Lett., 86, 229-235 (2018) · Zbl 1410.65475
[15] Chai, Y. B.; Gong, Z. X.; Li, W.; Li, T. Y.; Zhang, Q. F.; Zou, Z. H.; Sun, Y. B., Application of smoothed finite element method to two-dimensional exterior problems of acoustic radiation, Int. J. Comput. Methods, 15, Article 1850029 pp. (2018) · Zbl 1404.76158
[16] Belytschko, T.; Lu, Y. Y.; Gu, L., Element-free Galerkin methods, Int. J. Numer. Methods Eng., 37, 2, 229-256 (1994) · Zbl 0796.73077
[17] Lancaster, P.; Salkauskas, K., Surfaces generated by moving least squares methods, Math. Comp., 37, 155, 141-158 (1981) · Zbl 0469.41005
[18] Chen, L. C.; Liu, X.; Li, X. L., The boundary element-free method for 2D interior and exterior Helmholtz problems, Comput. Math. Appl., 77, 846-864 (2019) · Zbl 1442.65403
[19] Chen, L. C.; Li, X. L., Boundary element-free methods for exterior acoustic problems with arbitrary and high wavenumbers, Appl. Math. Model., 72, 85-103 (2019) · Zbl 1481.65241
[20] Ren, H. P.; Cheng, Y. M., The interpolating element-free Galerkin (IEFG) method for two-dimensional potential problems, Eng. Anal. Bound. Elem., 36, 5, 873-880 (2012) · Zbl 1352.65539
[21] Li, X. L., Error estimates for the moving least-square approximation and the element-free Galerkin method in \(n\)-dimensional spaces, Appl. Numer. Math., 99, 77-97 (2016) · Zbl 1329.65274
[22] Wang, J. F.; Sun, F. X.; Cheng, Y. M., Error estimates for the interpolating moving least-squares method, Appl. Math. Comput., 245, 321-342 (2014) · Zbl 1335.65018
[23] Salehi, R.; Dehghan, M., A generalized moving least square reproducing kernel method, J. Comput. Appl. Math., 249, 120-132 (2013) · Zbl 1285.65080
[24] Li, X. L., Three-dimensional complex variable element-free Galerkin method, Appl. Math. Model., 63, 148-171 (2018) · Zbl 1480.65342
[25] Dehghan, M.; Abbaszadeh, M., Two meshless procedures: Moving Kriging interpolation and element-free Galerkin for fractional PDEs, Appl. Anal., 96, 936-969 (2017) · Zbl 1369.65121
[26] Li, X. L.; Dong, H. Y., The element-free Galerkin method for the nonlinear p-Laplacian equation, Comput. Math. Appl., 75, 2549-2560 (2018) · Zbl 1409.65096
[27] Li, X. L.; Dong, H. Y., Analysis of the element-free Galerkin method for Signorini problems, Appl. Math. Comput., 346, 41-56 (2019) · Zbl 1428.74210
[28] Zhang, L.; Ouyang, J.; Zhang, X. H.; Zhang, W. B., On a multi-scale element-free Galerkin method for the Stokes problem, Appl. Math. Comput., 203, 2, 745-753 (2008) · Zbl 1262.76026
[29] Zhang, T.; Li, X. L., A generalized element-free Galerkin method for Stokes problem, Comput. Math. Appl., 75, 9, 3127-3138 (2018) · Zbl 1409.76069
[30] Brezzi, F.; Fortin, M., Mixed and Hybrid Finite Element Methods (1991), Springer-Verlag: Springer-Verlag Berlin · Zbl 0788.73002
[31] Hughes, T. J.R., Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods, Comput. Method. Appl. M., 127, 1-4, 387-401 (1995) · Zbl 0866.76044
[32] Zhang, L.; Ouyang, J.; Zhang, X. H., The variational multiscale element free Galerkin method for MHD flows at high hartmann numbers, Comput. Phys. Comm., 184, 4, 1106-1118 (2013) · Zbl 1302.76110
[33] Zhang, L.; Ouyang, J.; Jiang, T., Variational multiscale element free Galerkin method for the water wave problems, J. Comput. Phys., 230, 12, 5045-5060 (2011) · Zbl 1416.76134
[34] Zhang, X. H.; Zhang, P., Meshless modeling of natural convection problems in non-rectangular cavity using the variational multiscale element free Galerkin method, Eng. Anal. Bound. Elem., 61, 287-300 (2015) · Zbl 1403.76054
[35] Zhang, P.; Zhang, X. H.; Deng, J. H.; Song, L. Z., A numerical study of natural convection in an inclined square enclosure with an elliptic cylinder using variational multiscale element free Galerkin method, Int. J. Heat Mass Transfer, 99, 721-737 (2016)
[36] Dehghan, M.; Abbaszadeh, M., Proper orthogonal decomposition variational multiscale element free Galerkin (POD-VMEFG) meshless method for solving incompressible Navier-Stokes equation, Comput. Method. Appl. M., 311, 856-888 (2016) · Zbl 1439.76060
[37] Dehghan, M.; Abbaszadeh, M., Variational multiscale element free Galerkin (VMEFG) and local discontinuous Galerkin (LDG) methods for solving two-dimensional Brusselator reaction-diffusion system with and without cross-diffusion, Comput. Method Appl. M., 300, 770-797 (2016) · Zbl 1425.65108
[38] Dehghan, M.; Abbaszadeh, M., Variational multiscale element-free Galerkin method combined with the moving Kriging interpolation for solving some partial differential equations with discontinuous solutions, J. Comput. Appl. Math., 37, 3869-3905 (2018) · Zbl 1404.65084
[39] Zhang, T.; Li, X. L., A variational multiscale interpolating element-free Galerkin method for convection-diffusion and Stokes problems, Eng. Anal. Bound. Elem., 82, 185-193 (2017) · Zbl 1403.76053
[40] Zhang, T.; Li, X. L., Meshless analysis of Darcy flow with a variational multiscale interpolating element-free Galerkin method, Eng. Anal. Bound. Elem., 100, 237-245 (2019) · Zbl 1464.76067
[41] Li, X. L.; Li, S. L., On the stability of the moving least squares approximation and the element-free Galerkin method, Comput. Math. Appl., 72, 6, 1515-1531 (2016) · Zbl 1361.65090
[42] Kang, Z. J.; Zhao, D. H.; Rui, H. X., Block-centered finite difference methods for general Darcy-Forchheimer problems, Appl. Math. Comput., 307, 124-140 (2017) · Zbl 1411.76100
[43] Masud, A.; Calderer, R., A variational multiscale stabilized formulation for the incompressible Navier-Stokes equations, Comput. Mech., 44, 2, 145-160 (2009) · Zbl 1165.76027
[44] Nguyen-Xuan, H.; Liu, G. R., An edge-based smoothed finite element method softened with a bubble function (bES-FEM) for solid mechanics problems, Comput. Struct., 128, 14-30 (2013)
[45] Brezzi, F.; Bristeau, M. O.; Franca, L. P.; Rogé, G., A relationship between stabilized finite element methods and the Galerkin method with bubble functions, Comput. Method. Appl. M., 96, 1, 117-129 (1992) · Zbl 0756.76044
[46] Masud, A.; Khurram, R. A., A multiscale/stabilized finite element method for the advection-diffusion equation, Comput. Method. Appl. M., 193, 21-22, 1997-2018 (2004) · Zbl 1067.76570
[47] Nakshatrala, K. B.; Masud, A.; Hjelmstad, K. D., On finite element formulations for nearly incompressible linear elasticity, Comput. Mech., 41, 4, 547-561 (2008) · Zbl 1162.74472
[48] Masud, A.; Khurram, R. A., A multiscale finite element method for the incompressible Navier-Stokes equations, Comput. Method. Appl. M., 195, 13-16, 1750-1777 (2006) · Zbl 1178.76233
[49] Turner, D. Z.; Nakshatrala, K. B.; Hjelmstad, K. D., On the stability of bubble functions and a stabilized mixed finite element formulation for the Stokes problem, Int. J. Numer. Methods. Fl., 60, 12, 1291-1314 (2009) · Zbl 1170.76035
[50] Le Beau, G. J.; Tezduyar, T. E., Finite element computation of compressible flows with the SUPG formulation, (Dhaubhadel, M. N.; Engelman, M. S.; J. N., Reddy, Advances in Finite Element Analysis in Fluid Dynamics, FED-vol.123 (1991), ASME: ASME New York), 21-27
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.