×

Stability of multirate explicit coupling of geomechanics with flow in a poroelastic medium. (English) Zbl 1443.65190

Summary: We consider single rate and multirate explicit schemes for the Biot system modeling coupled flow and geomechanics in a poro-elastic medium. These schemes are widely used in practice that follows a sequential procedure in which the flow and mechanics problems are fully decoupled. In such a scheme, the flow problem is solved first with time-lagging the displacement term followed by the mechanics solve. The multirate explicit coupling scheme exploits the different time scales for the mechanics and flow problems by taking multiple finer time steps for flow within one coarse mechanics time step. We provide fully discrete schemes for both the single and multirate approaches that use Backward Euler time discretization and mixed spaces for flow and conformal Galerkin for mechanics. We perform a rigorous stability analysis and derive the conditions on reservoir parameters and the number of finer flow solves to ensure stability for both schemes. Furthermore, we investigate the computational time savings for explicit coupling schemes against iterative coupling schemes.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76E20 Stability and instability of geophysical and astrophysical flows
76S05 Flows in porous media; filtration; seepage
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Coussy, O., Mechanics of Porous Continua (1995), Wiley: Wiley West Sussex PO19 1UD, England
[2] Mikelić, A.; Wheeler, M. F., Convergence of iterative coupling for coupled flow and geomechanics, Comput. Geosci., 17, 455-461 (2013) · Zbl 1392.35235
[3] Mikelić, A.; Wang, B.; Wheeler, M. F., Numerical convergence study of iterative coupling for coupled flow and geomechanics, Comput. Geosci., 18, 325-341 (2014) · Zbl 1386.76115
[4] Chin, L. Y.; Thomas, L. K.; Sylte, J. E.; Pierson, R. G., Iterative coupled analysis of geomechanics and fluid flow for rock compaction in reservoir simulation, Oil Gas Sci. Technol., 57, 5, 485-497 (2002)
[5] Mainguy, M.; Longuemare, P., Coupling fluid flow and rock mechanics: formulations of the partial coupling between reservoir and geomechanics simulators, Oil Gas Sci. Technol. - Rev. IFP, 57(4), 355-367 (2002)
[6] Almani, T.; Kumar, K.; Dogru, A.; Singh, G.; Wheeler, M. F., Convergence analysis of multirate fixed-stress split iterative schemes for coupling flow with geomechanics, Comput. Methods Appl. Mech. Engrg., 311, 180-207 (2016)
[7] Almani, T.; Kumar, K.; Wheeler, M. F., Convergence and error analysis of fully discrete iterative coupling schemes for coupling flow with geomechanics, Comput. Geosci., 21, 5, 1157-1172 (2017) · Zbl 1396.76047
[8] Almani, T., Efficient algorithms for flow models coupled with geomechanics for porous media applications (2016), The University of Texas at Austin, PhD thesis
[9] Almani, T.; Dogru, A. H.; Kumar, K.; Singh, G.; Wheeler, M. F., Convergence of multirate iterative coupling of geomechanics with flow in a poroelastic medium, Saudi Aramco J. Technol. (Spring 2016)
[10] Almani, T.; Kumar, K.; Wheeler, M. F., Convergence Analysis of Single Rate and Multirate Fixed Stress Split Iterative Coupling Schemes in Heterogeneous Poroelastic MediaIces report 17-23 (2017), Institute for Computational Engineering and Sciences, The University of Texas at Austin: Institute for Computational Engineering and Sciences, The University of Texas at Austin Austin, Texas
[11] Kumar, K.; Almani, T.; Singh, G.; Wheeler, M. F., Multirate undrained splitting for coupled flow and geomechanics in porous media, (Numerical Mathematics and Advanced Applications ENUMATH 2015 (2016), Springer International Publishing), 431-440 · Zbl 1387.76100
[12] Terzaghi, K. V., Theoretical soil mechanics (1943), Wiley: Wiley New York
[13] Biot, M. A., Consolidation settlement under a rectangular load distribution, J. Appl. Phys., 12, 5, 426-430 (1941) · JFM 67.0837.02
[14] Biot, M. A., General theory of three-dimensional consolidation, J. Appl. Phys., 12, 2, 155-164 (1941) · JFM 67.0837.01
[15] Murad, M. A.; Loula, A. F.D., Improved accuracy in finite element analysis of Biot’s consolidation problem, Comput. Methods Appl. Mech. Engrg., 95, 3, 359-382 (1992) · Zbl 0760.73068
[16] Murad, M. A.; Loula, A. F.D., On stability and convergence of finite element approximations of Biot’s consolidation problem, Internat. J. Numer. Methods Engrg., 37, 4, 645-667 (1994) · Zbl 0791.76047
[17] Showalter, R. E., Diffusion in poro-elastic media, J. Math. Anal. Appl., 251, 1, 310-340 (2000) · Zbl 0979.74018
[18] Bause, M.; Radu, F. A.; Köcher, U., Space-time finite element approximation of the Biot poroelasticity system with iterative coupling, Comput. Methods Appl. Mech. Engrg., 320, 745-768 (2017)
[19] Rodrigo, C.; Gaspar, F. J.; Hu, X.; Zikatanov, L. T., Stability and monotonicity for some discretizations of the Biot’s consolidation model, Comput. Methods Appl. Mech. Engrg., 298, 183-204 (2016) · Zbl 1425.74164
[20] Gaspar, F. J.; Lisbona, F. J.; Vabishchevich, P. N., A finite difference analysis of Biot’s consolidation model, Appl. Numer. Math., 44, 4, 487-506 (2003) · Zbl 1023.76032
[21] Gaspar, F.; Rodrigo, C., On the fixed-stress split scheme as smoother in multigrid methods for coupling flow and geomechanics, Comput. Methods Appl. Mech. Engrg., 326, 526-540 (2017)
[22] White, J. A.; Castelletto, N.; Tchelepi, H. A., Block-partitioned solvers for coupled poromechanics: a unified framework, Comput. Methods Appl. Mech. Engrg., 303, 55-74 (2016) · Zbl 1425.74497
[23] Lee, J. J.; Mardal, K.-A.; Winther, R., Parameter-robust discretization and preconditioning of Biot’s consolidation model, SIAM J. Sci. Comput., 39, 1, A1-A24 (2017) · Zbl 1381.76183
[24] Castelletto, N.; White, J. A.; Tchelepi, H. A., Accuracy and convergence properties of the fixed-stress iterative solution of two-way coupled poromechanics, Int. J. Numer. Anal. Methods Geomech., 39, 1593-1618 (2015)
[25] Girault, V.; Kumar, K.; Wheeler, M. F., Convergence of iterative coupling of geomechanics with flow in a fractured poroelastic medium, Comput. Geosci., 20, 5, 997-1011 (2016) · Zbl 1391.76650
[26] Both, J. W.; Borregales, M.; Nordbotten, J. M.; Kumar, K.; Radu, F. A., Robust fixed stress splitting for biots equations in heterogeneous media, Appl. Math. Lett., 68, 101-108 (2017) · Zbl 1383.74025
[27] Small, J. C.; Booker, J. R.; Davis, E. H., Elasto-plastic consolidation of soil, Int. J. Solids Struct., 12, 6, 431-448 (1976) · Zbl 0333.73073
[28] Settari, A.; Mourits, F. M., Coupling of geomechanics and reservoir simulation models, (Siriwardane; Zema, Comp. Methods and Advances in Geomech. (1994)), 2151-2158
[30] Borregales, M.; Radu, F. A.; Kumar, K.; Nordbotten, J. M., Robust iterative schemes for non-linear poromechanics, Comput. Geosci., 22, 4, 1021-1038 (2018) · Zbl 1402.65109
[32] Kim, J.; Tchelepi, H. A.; Juanes, R., Stability and convergence of sequential methods for coupled flow and geomechanics: fixed-stress and fixed-strain splits, Comput. Methods Appl. Mech. Engrg., 200, 13-16, 1591-1606 (2011) · Zbl 1228.74101
[33] Shan, L.; Zheng, H.; Layton, W. J., A decoupling method with different subdomain time steps for the nonstationary stokes-darcy model, Numer. Methods Partial Differential Equations, 29, 2, 549-583 (2013) · Zbl 1364.76096
[34] Xiong, X., Partitioned methods for coupled fluid flow and turbulence flow problems (2014), University of Pittsburgh, Pittsburgh, Pennsylvania, PhD Thesis
[35] Ciarlet, P. G., Linear and nonlinear functional analysis with applications, Vol. 130 (2013), Siam
[36] Wheeler, M. F.; Yotov, I., A multipoint flux mixed finite element method, SIAM J. Numer. Anal., 44, 2082-2106 (2006) · Zbl 1121.76040
[37] Ahmed, E.; Nordbotten, J. M.; Radu, F. A., Adaptive asynchronous time-stepping, stopping criteria, and a posteriori error estimates for fixed-stress iterative schemes for coupled poromechanics problems (2019), arXiv preprint arXiv:1901.01206
[38] Kumar, K.; Matculevich, S.; Nordbotten, J.; Repin, S., Guaranteed and computable bounds of approximation errors for the semi-discrete Biot problem (2018), arXiv preprint arXiv:1808.08036
[40] Phillips, P. J.; Wheeler, M. F., A coupling of mixed and continuous Galerkin finite element methods for poroelasticity. I. The continuous in time case, Comput. Geosci., 11, 2, 131-144 (2007) · Zbl 1117.74015
[41] Wheeler, M. F.; Xue, G.; Yotov, I., A multipoint flux mixed finite element method on distorted quadrilaterals and hexahedra, Numer. Math., 121, 1, 165-204 (2012) · Zbl 1277.65100
[42] Singh, G., Coupled flow and geomechanics modeling for fractured poroelastic reservoirs (2014), The University of Texas at Austin, Austin, Texas, PhD Thesis
[43] Juntunen, M.; Wheeler, M. F., Two-phase flow in complicated geometries - modeling the frio data using improved computational meshes, Comput. Geosci., 17, 239-247 (2013) · Zbl 1382.76168
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.