×

On the performance of two clustering methods for spatial functional data. (English) Zbl 1443.62187

Summary: The performance of two clustering strategies for spatially correlated functional data based on the same measure of spatial dependence is examined and compared. In particular, the role of the spatial dependence computed by the trace-variogram function is analyzed. The main features of both procedures is shown through a simulation study based on a variety of practical scenarios easily encountered in the analysis of spatial functional data. An application on real data based on salinity curves is also presented.

MSC:

62H30 Classification and discrimination; cluster analysis (statistical aspects)
62R10 Functional data analysis
86A32 Geostatistics

Software:

geofd; fda (R)
PDF BibTeX XML Cite
Full Text: DOI Link

References:

[1] Bock, H.-H.: Automatische Klassifikation (Clusteranalyse). Vandenhoeck & Ruprecht, Gottingen (1974)
[2] Borgault, G; Marcotte, D; Legendre, P, The multivariable covariogram as a spatial weighting function in classification methods, Math. Geol., 24, 463-478, (1992)
[3] Botero, L; Mancera, E, Sintesis de los cambios de origen antropico ocurridos en los ultimos 40 años en la cienaga grande de santa marta (Colombia), Revista de la Academia Colombiana de Ciencias, 20, 465-474, (1996)
[4] Celeux, G., Diday, E., Govaert, G., Lechevallier, Y., Ralambondrainy, H.: Classification automatique des donnees: environnement statistique et informatique. Dunod (1989) · Zbl 0729.62574
[5] Clarkson, D., Fraley, C., Gu, C., Ramsay, J.: S+ Functional Data Analysis User Guide. Springer, New York (2005)
[6] Cressie, N.A.C.: Statistics for Spatial Data. John Wiley & Sons, New York (1993)
[7] Cressie, NAC; Collins, LB, Analysis of spatial point patterns using bundles of product density lisa functions, J. Agric. Biol. Environ. Stat., 6, 118-135, (2001)
[8] Davies, D; Bouldin, D, A cluster separation measure, IEEE Trans. Pattern Anal. Mach. Intell., 1, 224-227, (1979)
[9] Delicado, P; Giraldo, R; Comas, C; Mateu, J, Statistics for spatial functional data: some recent contributions, Environmetrics, 21, 224-239, (2010)
[10] Diday, E, La methode des nuees dynamiques, Revue de Statistique Appliquee, 19, 19-34, (1971)
[11] Ferraty, F, Statistical methods and problems in infinite-dimensional spaces, J. Multivar. Anal., 101, 305-490, (2010) · Zbl 1222.62083
[12] Ferraty, F., Romain, Y.: The Oxford Handbook of Functional Data Analysis. Oxford University Press, New York (2011)
[13] Ferraty, F., Vieu, P.: Nonparametric Functional Data Analysis: Theory and Practice. Springer, New York (2006) · Zbl 1119.62046
[14] Giraldo, R; Martinez, J; Hurtado, H; Zea, S; Madera, R, Analisis de clasificacion de series temporales: el caso de la salinidad en la cienaga grande de santa marta, Anales del Instituo de Investigaciones Marinas de Punta de Betn, 24, 123-134, (1995)
[15] Giraldo, R; Delicado, P; Mateu, J, Ordinary Kriging for function-valued spatial data, Environ. Ecol. Stat., 18, 411-426, (2011)
[16] Giraldo, R; Delicado, P; Mateu, J, Hierarchical clustering of spatially correlated functional data, Stat. Neerlandica, 66, 403-421, (2012)
[17] Giraldo, R; Mateu, J; Delicado, P, Geofd: an R package for function-valued geostatistical prediction, Revista Colombiana de Estadistica, 35, 383-405, (2012) · Zbl 1283.62005
[18] Gonzalez-Manteiga, W; Vieu, P, Statistics for functional data, Comput. Stat. Data Anal., 51, 4788-4792, (2007) · Zbl 1162.62338
[19] Gordon, A.D.: Classification, 2nd edn. Chapman & Hall, Boca Raton (1999) · Zbl 0929.62068
[20] Hartigan, J.A.: Clustering Algorithms. John Wiley, New York (1975) · Zbl 0372.62040
[21] Hubert, L; Arabie, P, Comparing partitions, J. Classif., 2, 193-218, (1985)
[22] Jiang, H; Serban, N, Clustering random curves under spatial interdependence: classification of service accessibility, Technometrics, 54, 108-119, (2012)
[23] Jacques, J., Preda, C.: Functional data clustering: a survey. Adv. Data Anal. Classif. 8(3), 231-255 (2014) · Zbl 1414.62018
[24] Ramsay, J.E., Silverman, B.W.: Functional Data Analysis, 2nd edn. Springer, New York (2005)
[25] Rand, WM, Objective criteria for the evaluation of clustering methods, J. Am. Stat. Assoc., 66, 846-850, (1971)
[26] Romano, E., Balzanella, A., Verde, R.: Clustering Spatio-functional data: a model-based approach. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Berlin-Heidelberg (2010)
[27] Romano, E; Balzanella, A; Verde, R; Torelli, N (ed.); Pesarin, F (ed.); Bar-Hen, A (ed.), A regionalization method for spatial functional data based on variogram models: an application on environmental data, (2010), New York
[28] Romano, E; Verde, R; Ciaccio, A (ed.); Coli, M (ed.); Angulo, JM (ed.), Clustering geostatistical functional data, (2011), Berlin
[29] Sun, Y; Genton, MG, Adjusted functional boxplots for spatio-temporal data visualization and outlier detection, Environmetrics, 23, 54-64, (2012)
[30] Tarpey, T; Kinateder, K, Clustering functional data, J. Classif., 20, 93114, (2003) · Zbl 1112.62327
[31] Tarpey, T, Linear transformations and the k-means clustering algorithm: applications to clustering curves, Am. Stat., 61, 34-40, (2007)
[32] Valderrama, M, An overview to modelling functional data, Comput. Stat., 22, 331-334, (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.