zbMATH — the first resource for mathematics

A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. (English) Zbl 1442.74195
Summary: A novel variational framework to model the fatigue behavior of brittle materials based on a phase-field approach to fracture is presented. The standard regularized free energy functional is modified introducing a fatigue degradation function that effectively reduces the fracture toughness as a proper history variable accumulates. This macroscopic approach allows to reproduce the main known features of fatigue crack growth in brittle materials. Numerical experiments show that the Wöhler curve, the crack growth rate curve and the Paris law are naturally recovered, while the approximate Palmgren-Miner criterion and the monotonic loading condition are obtained as special cases.

74R05 Brittle damage
74R10 Brittle fracture
74S05 Finite element methods applied to problems in solid mechanics
PDF BibTeX Cite
Full Text: DOI
[1] Carrara, P.; De Lorenzis, L., A coupled damage-plasticity model for the cyclic behavior of shear-loaded interfaces, J. Mech. Phys. Solids, 85, 33-53 (2015)
[2] Newman, J., The merging of fatigue and fracture mechanics concepts: a historical perspective, Prog. Aerosp. Sci., 34, 5-6, 347-390 (1998)
[3] Schijve, J., Fatigue of structures and materials in the 20th century and the state of the art, Int. J. Fatigue, 25, 8, 679-702 (2003) · Zbl 1032.74500
[4] Suresh, S., Fatigue of Materials (1998), Cambridge University Press: Cambridge University Press Cambridge
[5] Wöhler, A., Über die festigkeits-versuche mit eisen und stahl, Z. Bauwes., XX, 73-106 (1870)
[6] Palmgren, A., The service life of ball bearings, Z. Ver. Dtsch. Ing., 339-341 (1924)
[7] Miner, M. A., Cumulative damage in fatigue, J. Appl. Mech., 12, September, A159-A164 (1945)
[8] Griffith, A., The phenomena of rupture and flow in solids, Phil. Trans. R. Soc. A, 221, 163-198 (1921)
[9] Paris, P.; Gomez, M. P.; Anderson, W. E., A rational analytic theory of fatiuge, Trend Eng., 13, 4, 9-14 (1961)
[10] Irwin, G., Analysis of stresses and strains near the end of a crack traversing a plate, J. Appl. Mech.-Trans. ASME, E24, 351-369 (1957)
[11] Paris, P.; Erdogan, F., A critical analysis of crack propagation laws, J. Basic Eng., 85, 4, 528-533 (1963)
[12] E647-05 Standard Test Method for Measurement of Fatigue Crack Growth Rates (2005), ASTM International: ASTM International West Conshohocken, PA, USA
[13] E1820-01 Standard Test Method for Measurement of Fatigue Crack Growth Rates (2008), ASTM International: ASTM International West Conshohocken, PA, USA
[14] Mettu, S. R.; Shivakumar, V.; Beek, J. M.; Yeh, F.; Williams, L. C.; Forman, R. G.; McMahon, J. J.; Newman, J. C., NASGRO 3.0 : A Software for Analyzing Aging AircraftNASA Technical Report, 792-801 (1999)
[15] Elber, W., Fatigue crack closure under cyclic tension, Eng. Fract. Mech., 2, 1, 37-45 (1970), arXiv:1011.1669v3
[16] Rabold, F.; Kuna, M., Automated finite element simulation of fatigue crack growth in three-dimensional structures with the software system procrack, Procedia Mater. Sci., 3, 1099-1104 (2014)
[17] Rabold, F.; Kuna, M.; Leibelt, T., Procrack: A software for simulating three-dimensional fatigue crack growth, Lect. Notes Appl. Comput. Mech., 66, 355-374 (2013) · Zbl 1426.74304
[18] Rege, K.; Lemu, H. G., A review of fatigue crack propagation modelling techniques using FEM and XFEM, IOP Conf. Ser.: Mater. Sci. Eng., 276, 1 (2017)
[19] Branco, R.; Antunes, F. V.; Costa, J. D., A review on 3D-FE adaptive remeshing techniques for crack growth modelling, Eng. Fract. Mech., 141, 170-195 (2015)
[20] Ambati, M.; Gerasimov, T.; De Lorenzis, L., A review on phase-field models of brittle fracture and a new fast hybrid formulation, Comput. Mech., 55, 2, 383-405 (2014) · Zbl 1398.74270
[21] Desmorat, R., Damage and fatigue - continuum damage mechanics modeling for fatigue of materials and structures, Rev. Eur. Génie Civ., 10, 6-7, 849-877 (2006)
[22] Tada, H.; Paris, P. C.; Irwin, G. R., The Stress Analysis of Cracks Handbook (2000), American Society of Mechanical Engineers
[23] Sha, Z.; Wong, W. H.; Pei, Q.; Branicio, P. S.; Liu, Z.; Wang, T.; Guo, T.; Gao, H., Atomistic origin of size effects in fatigue behavior of metallic glasses, J. Mech. Phys. Solids, 104, 84-95 (2017)
[24] Kozinov, S.; Kuna, M., Simulation of fatigue damage in ferroelectric polycrystals under mechanical/electrical loading, J. Mech. Phys. Solids, 116, 150-170 (2018)
[25] Li, D. F.; Barrett, R. A.; O’Donoghue, P. E.; O’Dowd, N. P.; Leen, S. B., A multi-scale crystal plasticity model for cyclic plasticity and low-cycle fatigue in a precipitate-strengthened steel at elevated temperature, J. Mech. Phys. Solids, 101, 44-62 (2017)
[26] Zi, G.; Song, J. H.; Budyn, E.; Lee, S. H.; Belytschko, T., A method for growing multiple cracks without remeshing and its application to fatigue crack growth, Modelling Simulation Mater. Sci. Eng., 12, 5, 901-915 (2004)
[27] Salvati, E.; Zhang, H.; Fong, K. S.; Song, X.; Korsunsky, A. M., Separating plasticity-induced closure and residual stress contributions to fatigue crack retardation following an overload, J. Mech. Phys. Solids, 98, 222-235 (2017)
[28] Hosseini, Z. S.; Dadfarnia, M.; Somerday, B. P.; Sofronis, P.; Ritchie, R. O., On the theoretical modeling of fatigue crack growth, J. Mech. Phys. Solids, 121, 341-362 (2018)
[29] Holopainen, S.; Kouhia, R.; Saksala, T., Continuum approach for modelling transversely isotropic high-cycle fatigue, Eur. J. Mech. A Solids, 60, 183-195 (2016) · Zbl 1406.74011
[30] Francfort, G. A.; Marigo, J. J., Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46, 8, 1319-1342 (1998) · Zbl 0966.74060
[31] Bourdin, B.; Francfort, G.; Marigo, J. J., Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, 48, 4, 797-826 (2000) · Zbl 0995.74057
[32] Pham, K.; Amor, H.; Marigo, J. J.; Maurini, C., Gradient damage models and their use to approximate brittle fracture, Int. J. Damage Mech., 20, 4, 618-652 (2011)
[33] Boldrini, J. L.; Barros de Moraes, E. A.; Chiarelli, L. R.; Fumes, F. G.; Bittencourt, M. L., A non-isothermal thermodynamically consistent phase field framework for structural damage and fatigue, Comput. Methods Appl. Mech. Engrg., 312, 395-427 (2016)
[34] Caputo, M.; Fabrizio, M., Damage and fatigue described by a fractional derivative model, J. Comput. Phys., 293, 400-408 (2015) · Zbl 1349.74030
[35] Amendola, G.; Fabrizio, M.; Golden, J. M., Thermomechanics of damage and fatigue by a phase field model, J. Therm. Stresses, 39, 5, 487-499 (2016), arXiv:1410.7042
[36] Alessi, R.; Vidoli, S.; De Lorenzis, L., A phenomenological approach to fatigue with a variational phase-field model: The one-dimensional case, Eng. Fract. Mech., 190, 53-73 (2018)
[37] Alessi, R.; Crismale, V.; Orlando, G., Fatigue effects in elastic materials with variational damage models: A vanishing viscosity approach, 1-30 (2018), arXiv:1807.04675
[38] Miehe, C.; Welschinger, F.; Hofacker, M., Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations, 1273-1311 (2010) · Zbl 1202.74014
[39] Mielke, A.; Roubíček, T., Rate-independent systems, (Applied Mathematical Sciences, vol. 193 (2015), Springer New York: Springer New York New York, NY) · Zbl 1339.35006
[40] Braides, A.; Garroni, A., A remark on the nonlocal approximation of free-discontinuity problems, Comm. Partial Differential Equations, 23, 817-829 (1998) · Zbl 0907.49009
[41] Ambrosio, L.; Tortorelli, V., On the approximation of free discontinuity problems, Boll. Unione Mat. Ital. B, 6, 1, 105-123 (1992) · Zbl 0776.49029
[42] Freddi, F., Fracture energy in phase field models, Mech. Res. Commun., 96, 29-36 (2019)
[43] Alessi, R.; Marigo, J. J.; Vidoli, S., Gradient damage models coupled with plasticity: Variational formulation and main properties, Mech. Mater., 80, 351-367 (2015)
[44] Wilson, Z. A.; Borden, M. J.; Landis, C. M., A phase-field model for fracture in piezoelectric ceramics, Int. J. Fract., 183, 2, 135-153 (2013)
[45] Steinke, C.; Kaliske, M., A phase-field crack model based on directional stress decomposition, Comput. Mech. (2018)
[46] Tanné, E.; Li, T.; Bourdin, B.; Marigo, J. J.; Maurini, C., Crack nucleation in variational phase-field models of brittle fracture, J. Mech. Phys. Solids, 110, 80-99 (2018)
[47] Lancioni, G.; Royer-Carfagni, G., The variational approach to fracture mechanics. a practical application to the french panthéon in Paris, J. Elasticity, 95, 1-2, 1-30 (2009) · Zbl 1166.74029
[48] Strobl, M.; Seelig, T., On constitutive assumptions in phase field approaches to brittle fracture, Procedia Struct. Integr., 2, 3705-3712 (2016)
[49] Amor, H.; Marigo, J. J.; Maurini, C., Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments, J. Mech. Phys. Solids, 57, 8, 1209-1229 (2009) · Zbl 1426.74257
[50] Freddi, F.; Royer-Carfagni, G., Regularized variational theories of fracture: A unified approach, J. Mech. Phys. Solids, 58, 8, 1154-1174 (2010) · Zbl 1244.74114
[51] Freddi, F.; Royer-Carfagni, G., Variational fracture mechanics to model compressive splitting of masonry-like materials, Ann. Solid Struct. Mech., 2, 2-4, 57-67 (2011)
[52] Sacco, E., Modellazione e calcolo di strutture in materiale non resistente a trazione, Rend. Lincei - Mat. Appl., 1, 9, 235-258 (1990)
[53] A.M. Gennai, C. Padovani, Constitutive equations for masonry-like materials, in: Il l German-Italian Symposium on the Applications of Mathematics in Industry and Technology, Siena, 1988, pp. 228-238. · Zbl 0724.73005
[54] Jaubert, A.; Marigo, J. J., Justification of paris-type fatigue laws from cohesive forces model via a variational approach, Contin. Mech. Thermodyn., 18, 1-2, 23-45 (2006) · Zbl 1101.74012
[55] Gerasimov, T.; De Lorenzis, L., On the penalization in variational phase-field models of brittle fracture, Comput. Methods Appl. Mech. Engrg., 359, 990-1026 (2019)
[56] Negri, M., From rate-dependent to rate-independent brittle crack propagation, J. Elasticity, 98, 2, 159-187 (2010) · Zbl 1267.74103
[57] Romani, R., Rupture en Compression des Structures Hétérogènes À Bas de Matériaux Quasi-Fragiles (2013), Université Pierre et Marie Curie: Université Pierre et Marie Curie Paris VI, (Ph.D. thesis)
[58] Nguyen, T. T.; Yvonnet, J.; Zhu, Q. Z.; Bornert, M.; Chateau, C., A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure, Eng. Fract. Mech., 139, 18-39 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.