×

zbMATH — the first resource for mathematics

A mechanical model for heat conduction. (English) Zbl 1442.74008
Summary: A theory of heat conduction in rigid heat conductors based entirely on mechanical concepts is proposed and compared with the traditional thermodynamic theories.
MSC:
74A15 Thermodynamics in solid mechanics
80A05 Foundations of thermodynamics and heat transfer
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bargmann, S.; Favata, A.; Podio Guidugli, P., A revised exposition of the Green-Naghdi theory of heat propagation, J. Elast., 114, 143-154 (2014) · Zbl 1284.35433
[2] Carstensen, C.; Hackl, K.; Mielke, A., Non-convex potentials and microstructures in finite-strain plasticity, Proc. R. Soc. Lond., A-458, 299-317 (2002) · Zbl 1008.74016
[3] Cattaneo, C., Sulla conduzione del calore, Atti Sem. Mat. Fis. Univ. Modena, 3, 83-101 (1948) · Zbl 0035.26203
[4] Coleman, BD; Noll, W., The thermodynamics of elastic materials with heat conduction and viscosity, Arch. Ration. Mech. Anal., 13, 167-178 (1963) · Zbl 0113.17802
[5] Dal Maso, G.; De Simone, A.; Mora, MG, Quasistatic evolution problems for linearly elastic-perfectly plastic materials, Arch. Ration. Mech. Anal., 180, 237-291 (2006) · Zbl 1093.74007
[6] Dal Maso, G.; De Simone, A.; Mora, MG; Morini, M., Globally stable quasistatic evolution problems in plasticity with softening, Netw. Heterog. Media, 3, 567-614 (2008) · Zbl 1156.74308
[7] de Groot, SR; Mazur, P., Non-equilibrium Themodynamics (1984), New York: Dover Publications, New York
[8] Del Piero, G., Nonclassical continua, pseudobalance, and the law of action and reaction, Math. Mech. Complex Syst., 2, 71-107 (2014) · Zbl 1400.74007
[9] Del Piero, G., The variational structure of classical plasticity, Math. Mech. Complex Syst., 6, 137-180 (2018) · Zbl 1401.74052
[10] Del Piero, G., Reality and representation in mechanics: the legacy of Walter Noll, J. Elast., 135, 117-148 (2019) · Zbl 1415.74001
[11] Edelen, DGB, On the existence of symmetry relations and dissipation potentials, Arch. Ration. Mech. Anal., 51, 218-227 (1973) · Zbl 0269.73003
[12] Fedelich, B.; Ehrlacher, A., Sur un principe de minimum concernant des matériaux à comportement indépendant du temps physique, C. R. Acad. Sci. Paris, 308, 1391-1394 (1989) · Zbl 0664.73008
[13] Fermi, E., Thermodynamics (1956), New York: Dover Publications, New York
[14] Francfort, GA; Marigo, J-J, Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46, 1319-1342 (1998) · Zbl 0966.74060
[15] Germain, P., Cours de Mécanique des Milieux Continus (1973), Paris: Masson, Paris · Zbl 0254.73001
[16] Germain, P., La méthode des puissances virtuelles en mécanique des milieux continus. Premiére partie: théorie du second gradient, J. Méc., 12, 235-274 (1973) · Zbl 0261.73003
[17] Germain, P., The method of virtual power in continuum mechanics. Part 2: microstructure,, SIAM J. Appl. Math., 25, 556-575 (1973) · Zbl 0273.73061
[18] Germain, P.; Maugin, GA; Drouot, R.; Sidoroff, F., My discovery of mechanics, Continuum Thermomechanics, P. Germain’s Anniversary Volume, 1-24 (2002), New York: Kluwer, New York
[19] Giorgi, C.; Grandi, D.; Pata, V., On the Green-Naghdi type III heat conduction model, Discrete Contin. Dyn. Syst., B-19, 2133-2143 (2014) · Zbl 1302.80004
[20] Green, AE; Naghdi, PM, A re-examination of the basic postulates of thermomechanics, Proc. R. Soc. Lond., A-432, 171-194 (1991) · Zbl 0726.73004
[21] Gurtin, ME; Fried, E.; Anand, L., The Mechanics and Thermodynamics of Continua (2010), Cambridge: Cambridge University Press, Cambridge
[22] Halphen, B.; Nguyen, QS, Sur les matériaux standards généralisés, J. Méc., 14, 39-63 (1975) · Zbl 0308.73017
[23] Hill, R.; Rice, JR, Elastic potentials and the structure of inelastic constitutive laws, SIAM J. Appl. Math., 25, 448-461 (1973) · Zbl 0275.73028
[24] Houlsby, GT; Puzrin, AM, A thermomechanical framework for constitutive models for rate-independent dissipative materials, Int. J. Plast., 16, 1017-1047 (2000) · Zbl 0958.74011
[25] Kestin, J.; Rice, JR; Stuart, EB, Paradoxes in the application of thermodynamics to strained solids, A Critical Review of Thermodynamics (1970), Baltimore: Mono Book Corp, Baltimore
[26] Marsden, J.E., Hughes, J.R.: Mathematical Foundations of Elasticity. Prentice-Hall, Englewood Cliffs (1983). (Reprinted by Dover Books, Mineola, N.Y. (1994)) · Zbl 0545.73031
[27] Mielke, A., Energetic formulation of multiplicative elasto-plasticity using dissipation distances, Contin. Mech. Thermodyn., 15, 351-382 (2003) · Zbl 1068.74522
[28] Moreau, J-J, Sur les lois de frottement, de plasticité et de viscosité,, C. R. Acad. Sc. Paris, 271, 608-611 (1970)
[29] Müller, I., On the entropy inequality, Arch. Ration. Mech. Anal., 26, 118-141 (1967) · Zbl 0163.46701
[30] Noll, W.: The foundations of classical mechanics in the light of recent advances in continuum mechanics. In: “The Axiomatic Method, with Special Reference to Geometry and Physics”, Symposium at Berkeley, 1957, pp. 266-281. North-Holland, Amsterdam (1959). (Reprinted in [37])
[31] Noll, W.: La mécanique classique, basée sur un axiome d’objectivité. In: “La Méthode Axiomatique dans les Mécaniques Classiques et Nouvelles”, Symposium in Paris, 1959, pp. 47-56, Gauthier-Villars, Paris (1963). (Reprinted in [37])
[32] Noll, W., Lectures on the foundations of continuum mechanics and thermodynamics, Arch. Ration. Mech. Anal., 52, 62-92 (1973) · Zbl 0284.73002
[33] Noll, W.: On material frame-indifference (1995). http://repository.cmu.edu/math/580
[34] Noll, W.: Updating “The Non-Linear Field Theories of Mechanics” (2004). http://www.math.cmu.edu/ wn0g/noll
[35] Noll, W., On the past and future of natural philosophy, J. Elast., 84, 1-11 (2006) · Zbl 1103.00303
[36] Noll, W., The Foundations of Continuum Mechanics and Thermodynamics (1974), Berlin: Selected Papers of W. Noll. Springer, Berlin · Zbl 0332.73001
[37] Petryk, H., Incremental energy minimization in dissipative solids, C. R. Acad. Sci. Paris, 331, 469-474 (2003) · Zbl 1177.74171
[38] Planck, M., Treatise on Thermodynamics (1945), Mineola: Dover, Mineola
[39] Podio Guidugli, P., A virtual power format for thermomechanics, Contin. Mech. Thermodyn., 20, 479-487 (2009) · Zbl 1234.74022
[40] Podio Guidugli, P., On energy and entropy inflows in the theory of heat conduction, Arch. Appl. Mech., 85, 347-353 (2015) · Zbl 1347.74029
[41] Podio Guidugli, P., Continuum Thermodynamics. SISSA Springer Series (2019), Berlin: Springer, Berlin
[42] Rice, JR, On the structure of stress-strain relations for time-dependent plastic deformation in metals, J. Appl. Mech., 37, 728-737 (1970)
[43] Rice, JR, Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity, J. Mech. Phys. Solids, 19, 433-455 (1971) · Zbl 0235.73002
[44] Straughan, B., Heat Waves (2011), New York: Springer, New York
[45] Truesdell, C., Rational Thermodynamics (1969), New York: McGraw-Hill, New York
[46] Truesdell, C., A First Course in Rational Continuum Mechanics (1991), Boston: Academic Press, Boston · Zbl 0866.73001
[47] Truesdell, C.; Noll, W.; Flügge, S., The non-linear field theories of mechanics, Handbuch der Physik (1965), Berlin: Springer, Berlin
[48] Truesdell, C.; Toupin, RA; Flügge, S., The classical field theories, Handbuch der Physik (1960), Berlin: Springer, Berlin
[49] Ziegler, H.; Sneddon, IN; Hill, R., Some extremum principles in irreversible thermodynamics, with application to continuum mechanics, Progress in Solid Mechanics, 91-193 (1963), Amsterdam: North Holland, Amsterdam
[50] Ziegler, H., An Introduction to Thermomechanics (1983), Amsterdam: North Holland, Amsterdam · Zbl 0531.73080
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.