×

Application of a lattice Boltzmann method combined with a Smagorinsky turbulence model to spatially resolved heat flux inside a refrigerated vehicle. (English) Zbl 1442.65306

Summary: In this work the simulation of velocity and temperature distributions inside a refrigerated vehicle is evaluated. For this purpose a 3D double distribution lattice Boltzmann method (LBM) with the Bhatnagar-Gross-Krook (BGK) collision operator is coupled by the buoyancy force calculated with the Boussinesq approximation. This LBM is extended by a Smagorinsky subgrid method, which numerically stabilizes the BGK scheme for low resolutions and high Reynolds and Rayleigh numbers. Besides validation against the two benchmark cases porous plate and natural convection in a square cavity evaluated at resolutions of \(y^+\approx 2\) for Ra numbers between \(10^3\) and \(10^{10}\), the method and its implementation are tested via comparison with experimental data for a refrigerated vehicle at \(\operatorname{Re}\approx 53 000\).
The aim of the investigation is to provide a deeper understanding of the refrigerated vehicle’s insulation processes including its thermal performance under turbulent flow conditions. Therefore, we extend this method by the half lattice division scheme for conjugate heat transfer to simulate in the geometry of a refrigerated vehicle including its insulation walls. This newly developed method combination enables us to accurately predict velocity and temperature distributions inside the cooled loading area, while spatially resolving the heat flux through the insulation walls. We simulate the time dependent heating process of the open door test and validate against measurements at four characteristic velocity and 13 temperature positions in the truck.

MSC:

65M75 Probabilistic methods, particle methods, etc. for initial value and initial-boundary value problems involving PDEs
76F65 Direct numerical and large eddy simulation of turbulence
76M28 Particle methods and lattice-gas methods
80A19 Diffusive and convective heat and mass transfer, heat flow

Software:

OpenLB
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Willems, W.; Skottke, T., Lineare Wärmebrücken in vakuumgedämmten Konstruktionen, Bauphysik, 30, 6, 373-379 (2008)
[2] Smale, N. J.; Moureh, J.; Cortella, G., A review of numerical models of airflow in refrigerated food applications, Int. J. Refrig., 29, 911-930 (2006)
[3] Tapsoba, M.; Moureh, J.; Flick, D., Airflow patterns in a slot-ventilated enclosure partially loaded with empty slotted boxes, Int. J. Heat Fluid Flow, 28, 5, 963-977 (2007), URL http://www.sciencedirect.com/science/article/pii/S0142727X07000306
[4] Ambaw, A.; Delele, M. A.; Defraeye, T.; Ho, Q. T.; Opara, L. U.; Nicolaï, B. M.; Verboven, P., The use of CFD to characterize and design post-harvest storage facilities: Past, present and future, Comput. Electron. Agric., 93, 184-194 (2013)
[5] Moureh, J.; Tapsoba, M.; Flick, D., Airflow in a slot-ventilated enclosure partially filled with porous boxes: Part I Measurements and simulations in the clear region, Comput. & Fluids, 38, 2, 194-205 (2009), URL http://www.sciencedirect.com/science/article/pii/S0045793008000480 · Zbl 1237.76195
[6] Moureh, J.; Tapsoba, M.; Flick, D., Airflow in a slot-ventilated enclosure partially filled with porous boxes: Part II Measurements and simulations within porous boxes, Comput. & Fluids, 38, 2, 206-220 (2009), URL http://www.sciencedirect.com/science/article/pii/S0045793008000492 · Zbl 1237.76196
[7] Delele, M.; Schenk, A.; Tijskens, E.; Ramon, H.; Nicolaï, B.; Verboven, P., Optimization of the humidification of cold stores by pressurized water atomizers based on a multiscale CFD model, J. Food Eng., 91, 2, 228-239 (2009), URL http://www.sciencedirect.com/science/article/pii/S0260877408004287
[8] Defraeye, T.; Blocken, B.; Carmeliet, J., CFD analysis of convective heat transfer at the surfaces of a cube immersed in a turbulent boundary layer, Int. J. Heat Mass Transfer, 53, 1, 297-308 (2010), URL http://www.sciencedirect.com/science/article/pii/S0017931009005109 · Zbl 1180.80014
[9] James, S. J.; James, C.; Evans, J. A., Modelling of food transportation systems: a review, Int. J. Refrig., 29, 947-957 (2006)
[11] Ho, S. H.; Rosario, L.; Rahman, M. M., Numerical simulation of temperature and velocity in a refrigerated warehouse, Int. J. Refrig., 33, 5, 1015-1025 (2010)
[12] Hao, X.; Ju, Y., Simulation and analysis on the flow field of the low temperature mini-type cold store, Heat Mass Transfer, 47, 7, 771-775 (2011)
[13] Akdemir, S., Numerical modelling and experimental validation of a cold store ambient factors, J. Agric. Sci., 21, 606-619 (2015)
[14] Hoang, H.-m.; Duret, S.; Flick, D.; Laguerre, O., Preliminary study of airflow and heat transfer in a cold room filled with apple pallets: Comparison between two modelling approaches and experimental results, Appl. Therm. Eng., 76, 367-381 (2015)
[15] Cardinale, F.; De Fazio, T.; Grandizio, P., Numerical and experimental computation of airflow in a transport container, Int. J. Heat Technol., 34, 4, 734-742 (2016)
[17] Fietz, J.; Krause, M. J.; Schulz, C.; Sanders, P.; Heuveline, V., Optimized hybrid parallel lattice Boltzmann fluid flow simulations on complex geometries, (Kaklamanis, C.; Papatheodorou, T.; Spirakis, P. G., Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Lecture Notes in Computer Science, vol. 7484 LNCS (2012), Springer Berlin Heidelberg), 818-829
[18] Henn, T.; Thäter, G.; Dröfler, W.; Nirschl, H.; Krause, M. J., Parallel dilute particulate flow simulations in the human nasal cavity, Comput. & Fluids, 124, 197-207 (2016) · Zbl 1390.76938
[19] Aidun, C. K.; Clausen, J. R., Lattice-Boltzmann method for complex flows, Annu. Rev. Fluid Mech., 42, 1, 439-472 (2010), arXiv:https://doi.org/10.1146/annurev-fluid-121108-145519 · Zbl 1345.76087
[20] Hou, S.; Sterling, J.; Chen, S.; Doolen, G. D., A lattice Boltzmann subgrid model for high Reynolds number flows, Fields Inst. Commun., 6 (1994) · Zbl 0923.76275
[21] Teixeira, C. M., Incorporating turbulence models into the lattice-boltzmann method, Internat. J. Modern Phys. C, 09, 08, 1159-1175 (1998), arXiv:https://www.worldscientific.com/doi/pdf/10.1142/S0129183198001060. URL https://www.worldscientific.com/doi/abs/10.1142/S0129183198001060
[22] Dong, Y.-H.; Sagaut, P.; Marie, S., Inertial consistent subgrid model for large-eddy simulation based on the lattice Boltzmann method, Phys. Fluids, 20, 3, 035104 (2008), arXiv:https://doi.org/10.1063/1.2842379 · Zbl 1182.76212
[23] Malaspinas, O.; Sagaut, P., Consistent subgrid scale modelling for lattice Boltzmann methods, J. Fluid Mech., 700, 514-542 (2012) · Zbl 1248.76120
[24] Khan, A. I.; Delbosc, N.; Noakes, C.; Summers, J., Real-time flow simulation of indoor environments using lattice Boltzmann method, (Building Simulation (2015), Tsinghua University Press)
[25] Obrecht, C.; Kuznik, F.; Merlier, L.; Roux, J.-J.; Tourancheau, B., Towards aeraulic simulations at urban scale using the lattice Boltzmann method, Environ. Fluid Mech., 15, 4, 753-770 (2015)
[26] Tiftikci, A.; Kocar, C., Investigation of thermal turbulent flow characteristics of wire-wrapped fuel pin bundle of sodium cooled fast reactor in lattice-Boltzmann framework, (25th International Conference Nuclear Energy for New Europe (NENE) (2016))
[27] Yuan, X.; Rösler, M.; Gritzki, R.; Felsmann, C., Lattice-Boltzmann-Methoden zur Berechnung von Raumluftströmungen, GI - GebäUdetechnik in Wissenschaft & Praxis, 138, 03, 256-262 (2017)
[30] Guo, Z.; Zheng, C.; Shi, B., Discrete lattice effects on the forcing term in the lattice Boltzmann method, Phys. Rev. E, 65, 46308 (2002) · Zbl 1244.76102
[31] Fröhlich, J., Large eddy simulation turbulenter Strömungen, Vol. 1 (2006), Springer
[34] Dharmarathne, S.; Tutkun, M.; Araya, G.; Castillo, L., Structures of scalar transport in a turbulent channel, Eur. J. Mech. B Fluids, 55, 259-271 (2016) · Zbl 1408.76280
[35] Latt, J.; Chopard, B.; Malaspinas, O.; Deville, M.; Michler, A., Straight velocity boundaries in the lattice Boltzmann method, Phys. Rev E, 77, 5, 56703 (2008)
[36] Junk, M.; Yang, Z., Outflow boundary conditions for the lattice Boltzmann method, Prog. Comput. Fluid Dyn., 8, 1-4, 38-48 (2008) · Zbl 1139.76045
[37] Succi, S., The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond, 288 (2001), Oxford University Press, doi: ISBN 0198503989 · Zbl 0990.76001
[38] Wang, J.; Wang, M.; Li, Z., A lattice Boltzmann algorithm for fluidsolid conjugate heat transfer, Int. J. Therm. Sci., 46, 3, 228-234 (2007)
[39] Heuveline, V.; Krause, M. J., OpenLB: Towards an efficient parallel open source library for Lattice Boltzmann fluid flow simulations, (Elster, J. D.A. C.; Wasniewski, J., PARA’08 Workshop on State-of-the-Art in Scientific and Parallel Computing, May 13-16, 2008. PARA’08 Workshop on State-of-the-Art in Scientific and Parallel Computing, May 13-16, 2008, Springer series Lecture Notes in Computer Science (LNCS), no. 6126, 6127 (2011))
[40] Krause, M. J.; Gengenbach, T.; Heuveline, V., Hybrid parallel simulations of fluid flows in complex geometries: Application to the human lungs, (Guarracino, M.; Vivien, F.; Traeff, J.; Cannatoro, M.; Danelutto, M.; Hast, A.; Perla, F.; Knuepfer, A.; Di Martino, B.; Alexander, M., Proc.\( \smallsetminus\) EuroPar, Europ. Conf. Parallel Comput.. Proc.\( \smallsetminus\) EuroPar, Europ. Conf. Parallel Comput., Lecture Notes in Computer Science, vol. 6586 (2010), Springer Berlin / Heidelberg), 209-216
[41] Krause, M. J.; Thäter, G.; Heuveline, V., Adjoint-based fluid flow control and optimisation with lattice Boltzmann methods, Comput. Math. Appl., 65, 6, 945-960 (2013) · Zbl 1319.76019
[42] Mink, A.; Thäter, G.; Nirschl, H.; Krause, M. J., A 3D Lattice Boltzmann method for light simulation in participating media, J. Comput. Sci., 17, 431-437 (2016)
[43] Trunk, R.; Henn, T.; Dörfler, W.; Nirschl, H.; Krause, M. J., Inertial dilute particulate fluid flow simulations with an Euler???Euler lattice Boltzmann method, J. Comput. Sci., 17, 438-445 (2016)
[44] Guo, Z.; Shi, B.; Zheng, C., A coupled lattice BGK model for the Boussinesq equations, Internat. J. Numer. Methods Fluids, 39, 4, 325-342 (2002) · Zbl 1014.76071
[45] Peng, Y.; Shu, C.; Chew, Y. T., Simplified thermal lattice Boltzmann model for incompressible thermal flows, Phys. Rev. E, 68, August, 1-8 (2003)
[46] Dixit, H. N.; Babu, V., Simulation of high Rayleigh number natural convection in a square cavity using the lattice Boltzmann method, Int. J. Heat Mass Transfer, 49, 3-4, 727-739 (2006) · Zbl 1189.76529
[47] De Vahl Davis, G., Natural convection of air in a square cavity: A bench mark numerical solution, Internat. J. Numer. Methods Fluids, 3, 3, 249-264 (1983) · Zbl 0538.76075
[48] Markatos, N. C., Laminar and turbulent natural convection in an enclosed cavity, Int. J. Heat Mass Transfer, 27, 5, 755-772 (1983) · Zbl 0542.76112
[49] Hortmann, M., Finite volume multigrid prediction of laminar natural convection: Benchmark solutions, Internat. J. Numer. Methods Fluids, 11, August 1989, 189-207 (1990) · Zbl 0711.76072
[50] White, F. M., Fluid Mechanics, 467 (2003), McGraw-Hill Book Company: McGraw-Hill Book Company Boston
[51] Le Quéré, P., Accurate solutions to the square thermally driven cavity at high Rayleigh number, Comput. & Fluids, 20, 1, 29-41 (1991) · Zbl 0731.76054
[52] VDI-Wärmeatlas, 1512 (2013), Springer Vieweg: Springer Vieweg Berlin, Heidelberg
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.