Stability of the solitary manifold of the perturbed sine-Gordon equation. (English) Zbl 1442.35065

Summary: We study the perturbed sine-Gordon equation \(\theta_{tt} - \theta_{xx} + \sin \theta = F(\varepsilon, x)\), where \(F\) is of differentiability class \(C^n\) in \(\varepsilon\) and the first \(k\) derivatives vanish at \(\varepsilon = 0\), i.e., \(\partial_\varepsilon^l F(0, \cdot) = 0\) for \(0 \leq l \leq k\). We construct implicitly a virtual solitary manifold by deformation of the classical solitary manifold in \(n\) iteration steps. Our main result establishes that the initial value problem with an appropriate initial state \(\varepsilon^n\)-close to the virtual solitary manifold has a unique solution, which follows up to time \(1 /(\widetilde{C} \varepsilon^{\frac{ k + 1}{2}})\) and errors of order \(\varepsilon^n\) a trajectory on the virtual solitary manifold. The trajectory on the virtual solitary manifold is described by two parameters, which satisfy a system of ODEs. In contrast to previous works our stability result yields arbitrarily high accuracy as long as the perturbation \(F\) is sufficiently often differentiable.


35C08 Soliton solutions
35L71 Second-order semilinear hyperbolic equations
35B40 Asymptotic behavior of solutions to PDEs
Full Text: DOI arXiv


[1] Benjamin, T. Brooke, Applications of Leray-Schauder degree theory to problems of hydrodynamic stability, Math. Proc. Camb. Philos. Soc., 79, 2, 373-392 (1976) · Zbl 0351.76054
[2] Bona, J., On the stability theory of solitary waves, Proc. R. Soc. Lond. Ser. A, 344, 1638, 363-374 (1975) · Zbl 0328.76016
[3] Brezis, Haim, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext (2011), Springer: Springer New York · Zbl 1220.46002
[4] Buslaev, V. S.; Perel’man, G. S., On nonlinear scattering of states which are close to a soliton, Méthodes Semi-Classiques, vol. 2. Méthodes Semi-Classiques, vol. 2, Nantes, 1991. Méthodes Semi-Classiques, vol. 2. Méthodes Semi-Classiques, vol. 2, Nantes, 1991, Astérisque, (210):6, 49-63 (1992) · Zbl 0795.35111
[5] Côte, Raphaël; Muñoz, Claudio; Pilod, Didier; Simpson, Gideon, Asymptotic stability of high-dimensional Zakharov-Kuznetsov solitons, Arch. Ration. Mech. Anal., 220, 2, 639-710 (2016) · Zbl 1334.35276
[6] Deimling, Klaus, Nonlinear Functional Analysis (1985), Springer-Verlag: Springer-Verlag Berlin · Zbl 0559.47040
[7] Frenkel, Y. I.; Kontorova, T., J. Phys. Acad. Sci. USSR, 1, 137 (1939)
[8] Fröhlich, J.; Gustafson, S.; Jonsson, B. L.G.; Sigal, I. M., Solitary wave dynamics in an external potential, Commun. Math. Phys., 250, 3, 613-642 (2004) · Zbl 1075.35075
[9] Henry, Daniel B.; Perez, J. Fernando; Wreszinski, Walter F., Stability theory for solitary-wave solutions of scalar field equations, Commun. Math. Phys., 85, 3, 351-361 (1982) · Zbl 0546.35062
[10] Hislop, P. D.; Sigal, I. M., Introduction to Spectral Theory, Applied Mathematical Sciences, vol. 113 (1996), Springer-Verlag: Springer-Verlag New York, with applications to Schrödinger operators · Zbl 0855.47002
[11] Holmer, Justin, Dynamics of KdV solitons in the presence of a slowly varying potential, Int. Math. Res. Not., 23, 5367-5397 (2011) · Zbl 1247.35132
[12] Holmer, Justin; Lin, Quanhui, Phase-driven interaction of widely separated nonlinear Schrödinger solitons, J. Hyperbolic Differ. Equ., 9, 3, 511-543 (2012) · Zbl 1256.35137
[13] Holmer, Justin; Zworski, Maciej, Slow soliton interaction with delta impurities, J. Mod. Dyn., 1, 4, 689-718 (2007) · Zbl 1137.35060
[14] Holmer, Justin; Zworski, Maciej, Soliton interaction with slowly varying potentials, Int. Math. Res. Not., 10, Article rnn026 pp. (2008) · Zbl 1147.35084
[15] Imaykin, Valery; Komech, Alexander; Vainberg, Boris, Scattering of solitons for coupled wave-particle equations, J. Math. Anal. Appl., 389, 2, 713-740 (2012) · Zbl 1235.35068
[16] Inoue, Masahiro; Chung, S. G., Bion dissociation in sine-Gordon system, J. Phys. Soc. Jpn., 46, 5, 1594-1601 (1979)
[17] Kivshar, Yuri S.; Malomed, Boris A., Dynamics of solitons in nearly integrable systems, Rev. Mod. Phys., 61, 763-915 (Oct 1989)
[18] Komech, Alexander; Spohn, Herbert; Kunze, Markus, Long-time asymptotics for a classical particle interacting with a scalar wave field, Commun. Partial Differ. Equ., 22, 1-2, 307-335 (1997) · Zbl 0878.35094
[19] Kopylova, Elena, Asymptotic Stability of Solitons for Nonlinear Hyperbolic Equations (2015), Universität Wien, Habilitationsschrift · Zbl 1327.35266
[20] Kowalczyk, Michal; Martel, Yvan; Muñoz, Claudio, Kink dynamics in the \(\phi^4\) model: asymptotic stability for odd perturbations in the energy space, J. Am. Math. Soc., 30, 3, 769-798 (2017) · Zbl 1387.35419
[21] Lars, B.; Jonsson, G.; Fröhlich, Jürg; Gustafson, Stephen; Sigal, Israel Michael, Long time motion of NLS solitary waves in a confining potential, Ann. Henri Poincaré, 7, 4, 621-660 (2006) · Zbl 1100.81019
[22] Martin, Robert H., Nonlinear Operators and Differential Equations in Banach Spaces, Pure and Applied Mathematics (1976), Wiley-Interscience [John Wiley & Sons]: Wiley-Interscience [John Wiley & Sons] New York-London-Sydney · Zbl 0333.47023
[23] Mashkin, Timur, Stability of the Solitary Manifold of the Sine-Gordon Equation (2016), Universität zu Köln
[24] Mashkin, Timur, Invariant virtual solitary manifold of the perturbed sine-Gordon equation (2018)
[25] Mikeska, H. J., Solitons in a one-dimensional magnet with an easy plane, J. Phys. C, Solid State Phys., 11, 1, L29 (1978)
[26] Mizumachi, Tetsu; Pelinovsky, Dmitry, Bäcklund transformation and \(L^2\)-stability of NLS solitons, Int. Math. Res. Not., 9, 2034-2067 (2012) · Zbl 1239.35148
[27] Skyrme, T. H.R., Particle states of a quantized meson field, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., 262, 1309, 237-245 (1961) · Zbl 0099.43605
[28] Soffer, A.; Weinstein, M. I., Multichannel nonlinear scattering for nonintegrable equations, Commun. Math. Phys., 133, 1, 119-146 (1990) · Zbl 0721.35082
[29] Stuart, David M. A., Perturbation theory for kinks, Commun. Math. Phys., 149, 3, 433-462 (1992) · Zbl 0756.35084
[30] Stuart, David M., Solitons on pseudo-Riemannian manifolds. I. The sine-Gordon equation, Commun. Partial Differ. Equ., 23, 9-10, 1815-1837 (1998) · Zbl 0935.35143
[31] David M.A. Stuart, Sine Gordon notes, unpublished notes, 2012.
[32] Weinstein, Michael I., Lyapunov stability of ground states of nonlinear dispersive evolution equations, Commun. Pure Appl. Math., 39, 1, 51-67 (1986) · Zbl 0594.35005
[33] Zhang, L.; Huang, L.; Qiu, X. M., Josephson junction dynamics in the presence of microresistors and an ac drive, J. Phys. Condens. Matter, 7, 2, 353 (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.