×

New quantum private comparison protocol without a third party. (English) Zbl 1441.81044

Summary: This paper presents a novel quantum private comparision \((QPC)\) protocol based on the single-qubit rotations, quantum SWAP-test and quantum SWAP gates. The proposed \(QPC\) protocol can secretly compare information of the two participants without the help of a third party \((TP)\). The security analysis of the presented \(QPC\) protocol shows that it is quantum indistinguishable and information theory security for all outside attackers and inside attackers. Finally, we compare some important features of the presented QPC protocol with other \(QPC\) protocols. The results show that the proposed protocol has some advantages different from previous protocols.

MSC:

81P45 Quantum information, communication, networks (quantum-theoretic aspects)
81P94 Quantum cryptography (quantum-theoretic aspects)
81P65 Quantum gates
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Xu, TT; Li, ZH; Bai, CM, A new improving quantum secret sharing scheme, Int. J. Theor. Phys., 56, 1-10 (2017) · Zbl 1365.01071 · doi:10.1007/s10773-016-3222-5
[2] Bai, CM; Li, ZH; Xu, TT, Quantum secret sharing using the d-dimensional GHZ state, Quantum Inf. Process., 16, 3, 59 (2017) · Zbl 1373.81170 · doi:10.1007/s11128-016-1506-6
[3] Zhang, W.; Ding, DS; Sheng, YB, Quantum secure direct communication with quantum memory, Phys. Rev. Lett., 118, 22, 220501 (2017) · doi:10.1103/PhysRevLett.118.220501
[4] He, YF; Ma, WP, Three-party quantum secure direct communication against collective noise, Quantum Inf. Process., 16, 10, 252 (2017) · Zbl 1387.81183 · doi:10.1007/s11128-017-1703-y
[5] Wu, WQ; Cai, QY; Zhang, HG, Quantum Public key cryptosystem based on bell sates, Int. J. Theor. Phys., 56, 11, 3431-3440 (2017) · Zbl 1387.81200 · doi:10.1007/s10773-017-3506-4
[6] Wu, WQ; Cai, QY; Zhang, HG, Bit-oriented quantum public-key cryptosystem based on bell states, Int. J. Theor. Phys., 57, 12, 1-11 (2018)
[7] Yang, YG; Cao W. F.; Wen Q. Y., Secure quantum private comparison, Physica Scripta, 80, 6, 065002 (2009) · Zbl 1184.81043 · doi:10.1088/0031-8949/80/06/065002
[8] Ye, TY; Ji, ZX, Two-party quantum private comparison with five-qubit entangled states, Int. J. Theor. Phys., 56, 5, 1517-1529 (2017) · Zbl 1366.81144 · doi:10.1007/s10773-017-3291-0
[9] Pan, HM, Quantum private comparison based on x-type entangled states, Int. J. Theor. Phys., 56, 10, 3340-3347 (2017) · Zbl 1387.81185 · doi:10.1007/s10773-017-3499-z
[10] Ji, ZX; Ye, TY, Multi-party quantum private comparison based on the entanglement swapping of d-level cat states and d-level Bell states, Quantum Inf. Process., 16, 7, 177 (2017) · Zbl 1373.81192 · doi:10.1007/s11128-017-1628-5
[11] Xu, L.; Zhao, Z., A robust and efficient quantum private comparison of equality based on the entangled swapping of GHZ-like state and χ+ state, Int. J. Theor. Phys., 56, 8, 2671-2685 (2017) · Zbl 1387.81201 · doi:10.1007/s10773-017-3425-4
[12] Xu, L.; Zhao, Z., Quantum private comparison protocol based on the entanglement swapping between (χ+) state and W-Class state, Quantum Inf. Process., 16, 12, 302 (2017) · Zbl 1382.81079 · doi:10.1007/s11128-017-1755-z
[13] Zhou, MK, Improvements of quantum private comparison protocol based on cluster states, Int. J. Theor. Phys., 2, 1-6 (2017)
[14] Wu, WQ; Cai, QY; Wu, SM, Cryptanalysis and improvement of Ye others’s quantum private comparison protocol, Int. J. Theor. Phys., 2019, 1-7 (2019)
[15] Hung, SM; Hwang, SL; Hwang, T., Multiparty quantum private comparison with almost dishonest third parties for strangers, Quantum Inf. Process., 16, 2, 36 (2017) · Zbl 1383.81071 · doi:10.1007/s11128-016-1498-2
[16] Wu, WQ; Cai, QY; Wu, SM, Cryptanalysis of He’s quantum private comparison protocol and a new protocol, Int. J. Quantum Inf., 17, 3, 1950026 (2019) · Zbl 1426.81021 · doi:10.1142/S0219749919500266
[17] Lin, J.; Yang, CW; Hwang, T., Quantum private comparison of equality protocol without a third party, Quantum Inf. Process., 13, 2, 157 (2013)
[18] He, GP, Quantum private comparison protocol without a third party, Int. J. Quantum Inf., 15, 2, 1750014 (2016) · Zbl 1375.81076 · doi:10.1142/S0219749917500149
[19] He, G.P.: Device-independent quantum private comparison protocol without a third party. arXiv:1710.05051 · Zbl 1375.81076
[20] Chuang, IL, Quantum computation and quantum information (2008), Cambridge: Cambridge University Press, Cambridge
[21] Gockenbach, MS, Finite-dimensional linear algebra (2010), Boca Raton: CRC Press, Boca Raton · Zbl 1202.15002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.