×

A domain decomposition method for the non-intrusive reduced order modelling of fluid flow. (English) Zbl 1441.76074

Summary: In this paper we present a new domain decomposition non-intrusive reduced order model (DDNIROM) for the Navier-Stokes equations. The computational domain is partitioned into subdomains and a set of local basis functions is constructed in each subdomain using Proper Orthogonal Decomposition (POD). A radial basis function (RBF) method is then used to generate a set of hypersurfaces for each subdomain. Each local hypersurface represents, not only the fluid dynamics over the subdomain to which it belongs, but also the interactions with the surrounding subdomains. This implicit coupling between the subdomains provides the global coupling necessary to enforce incompressibility and is a means of providing boundary conditions for each subdomain. The performance of this DDNIROM is illustrated numerically by three examples: flow past a cylinder, and air flow over 2D and 3D street canyons. The results show that the DDNIROM exhibits good agreement with the high-fidelity full model while the computational cost is reduced by several orders of magnitude. The domain decomposition (DD) method provides the flexibility to choose different numbers of local basis functions for each subdomain depending on the complexity of the flow therein. The fact that the RBF surface representation takes input only from its current subdomain and the surrounding subdomains, means that, crucially, there is a reduction in the dimensionality of the hypersurface when compared with a more traditional, global NIROM. This comes at the cost of having a larger number of hypersurfaces.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M55 Multigrid methods; domain decomposition for initial value and initial-boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Oliver, J.; Caicedo, M.; Huespe, A. E.; Hernández, J. A.; Roubin, E., Reduced order modeling strategies for computational multiscale fracture, Comput. Methods Appl. Mech. Engrg., 313, 560-595 (2017) · Zbl 1439.74365
[2] Noack, B. R.; Afanasiev, K.; Morzyński, M.; Tadmor, G.; Thiele, F., A hierarchy of low-dimensional models for the transient and post-transient cylinder wake, J. Fluid Mech., 497, 335-363 (2003) · Zbl 1067.76033
[3] Noack, B. R.; Stankiewicz, W.; Morzyński, M.; Schmid, P. J., Recursive dynamic mode decomposition of transient and post-transient wake flows, J. Fluid Mech., 809, 843-872 (2016) · Zbl 1383.76122
[4] Xie, X.; Wells, D.; Wang, Z.; Iliescu, T., Approximate deconvolution reduced order modeling, Comput. Methods Appl. Mech. Engrg., 313, 512-534 (2017) · Zbl 1439.76038
[5] Lorenzi, S.; Cammi, A.; Luzzi, L.; Rozza, G., POD-Galerkin method for finite volume approximation of Navier-Stokes and RANS equations, Comput. Methods Appl. Mech. Engrg., 311, 151-179 (2016) · Zbl 1439.76112
[6] Wang, Y.; Navon, I. M.; Wang, X.; Cheng, Y., 2D Burgers Equation with large Reynolds number using POD/DEIM and calibration, Internat. J. Numer. Methods Fluids, 82, 12, 909-931 (2016)
[7] Cordier, L.; Noack, B. R.; Morzyński, M.; Tadmor, G.; Lehmann, O.; Siegel, S.; King, R., Reduced-Order Modelling for Flow Control, Vol. 528 (2011), Springer
[8] Bergmann, M.; Cordier, L., Optimal control of the cylinder wake in the laminar regime by trust-region methods and POD reduced-order models, J. Comput. Phys., 227, 16, 7813-7840 (2008) · Zbl 1388.76073
[9] Bergmann, M.; Cordier, L.; Brancher, J. P., Optimal rotary control of the cylinder wake using proper orthogonal decomposition reduced-order model, Physics of fluids, 17, 9, 097101 (2005) · Zbl 1187.76044
[10] Fang, F.; Zhang, T.; Pavlidis, D.; Pain, C. C.; Buchan, A. G.; Navon, I. M., Reduced order modelling of an unstructured mesh air pollution model and application in 2D/3D urban street canyons, Atmos. Environ., 96, 96-106 (2014)
[11] Hoang, K. C.; Fu, Y.; Song, J. H., An hp-proper orthogonal decomposition – moving least squares approach for molecular dynamics simulation, Comput. Methods Appl. Mech. Engrg., 298, 548-575 (2016) · Zbl 1423.82026
[12] Manzoni, A.; Salmoiraghi, F.; Heltai, L., Reduced basis isogeometric methods (RB-IGA) for the real-time simulation of potential flows about parametrized NACA airfoils, Comput. Methods Appl. Mech. Engrg., 284, 1147-1180 (2015) · Zbl 1423.76181
[13] Akhras, H. A.; Elguedj, T.; Gravouil, A.; Rochette, M., Towards an automatic isogeometric analysis suitable trivariate models generation – application to geometric parametric analysis, Comput. Methods Appl. Mech. Engrg., 316, 623-645 (2017) · Zbl 1439.65026
[14] Ballarin, F.; Faggiano, E.; Ippolito, S.; Manzoni, A.; Quarteroni, A.; Rozza, G.; Scrofani, R., Fast simulations of patient-specific haemodynamics of coronary artery bypass grafts based on a POD-Galerkin method and a vascular shape parametrization, J. Comput. Phys., 315, 609-628 (2016) · Zbl 1349.76173
[15] Cordier, L.; Noack, B. R.; Tissot, G.; Lehnasch, G.; Delville, J.; Balajewicz, M.; Daviller, G.; Niven, R. K., Identification strategies for model-based control, Exp. Fluids, 54, 8, 1580 (2013)
[16] Schlegel, M.; Noack, B. R., On long-term boundedness of Galerkin models, J. Fluid Mech., 765, 325-352 (2015) · Zbl 1336.76014
[17] Osth, J.; Noack, B. R.; Krajnovic, S.; Barros, D.; Boree, J., On the need for a nonlinear subscale turbulence term in POD models as exemplified for a high-reynolds-number flow over an ahmed body, J. Fluid Mech., 747, 518-544 (2014) · Zbl 1371.76085
[18] Franca, L. P.; Frey, S. L., Stabilized finite element methods: II. The incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 99, 2, 209-233 (1992) · Zbl 0765.76048
[19] Chaturantabut, S.; Sorensen, D. C., Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput., 32, 2737-2764 (2010) · Zbl 1217.65169
[20] Xiao, D., Non-Intrusive Reduced Order Models and Their Applications (2016), Imperial College London, (Ph.D. thesis)
[21] Fang, F.; Pain, C. C.; Navon, I. M.; Elsheikh, A. H.; Du, J.; Xiao, D., Non-linear Petrov-Galerkin methods for reduced order hyperbolic equations and discontinuous finite element methods, J. Comput. Phys., 234, 540-559 (2013) · Zbl 1284.65132
[22] Xiao, D.; Fang, F.; Du, J.; Pain, C. C.; Navon, I. M.; Buchan, A. G.; ElSheikh, A. H.; Hu, G., Non-linear Petrov-Galerkin methods for reduced order modelling of the Navier-Stokes equations using a mixed finite element pair, Comput. Methods Appl. Mech. Engrg., 255, 147-157 (2013) · Zbl 1297.76107
[23] Cordier, L.; Abou El Majd, B.; Favier, J., CaLibration of POD reduced-order models using tikhonov regularization, Internat. J. Numer. Methods Fluids, 63, 2, 269-296 (2010) · Zbl 1425.76181
[24] Carlberg, K.; Bou-Mosleh, C.; Farhat, C., Efficient non-linear model reduction via a least-squares Petrov-Galerkin projection and compressive tensor approximations, Internat. J. Numer. Methods Engrg., 86, 2, 155-181 (2011) · Zbl 1235.74351
[25] Chu, Y.; Serpas, M.; Hahn, J., State-preserving nonlinear model reduction procedure, Chem. Eng. Sci., 66, 17, 3907-3913 (2011)
[26] Sabetghadam, F.; Jafarpour, A., \( \alpha\) Regularization of the POD-Galerkin dynamical systems of the kuramoto – sivashinsky equation, Appl. Math. Comput., 218, 10, 6012-6026 (2012) · Zbl 1246.65180
[27] Willcox, K.; Megretski, A., Model reduction for large-scale linear applications, (Proc.of 13th IFAC Symposium on System Identification, Rotterdam, Netherlands (2003)), 1431-1436
[28] Barrault, M.; Maday, Y.; Nguyen, N. C.; Patera, A. T., An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations, C. R. Math., 339, 9, 667-672 (2004) · Zbl 1061.65118
[29] Xiao, D.; Fang, F.; Buchan, A. G.; Pain, C. C.; Navon, I. M.; Du, J.; Hu, G., Non-linear model reduction for the Navier-Stokes equations using residual DEIM method, J. Comput. Phys., 263, 1-18 (2014) · Zbl 1349.76288
[30] Carlberg, K.; Farhat, C.; Cortial, J.; Amsallem, D., The GNAT method for nonlinear model reduction: Effective implementation and application to computational fluid dynamics and turbulent flows, J. Comput. Phys., 242, 623-647 (2013) · Zbl 1299.76180
[31] Du, J.; Fang, F.; Pain, C. C.; Navon, I. M.; Zhu, J.; Ham, D. A., POD Reduced-order unstructured mesh modeling applied to 2d and 3D fluid flow, Comput. Math. Appl., 65, 3, 362-379 (2013) · Zbl 1319.76026
[32] Xiao, D.; Fang, F.; Buchan, A. G.; Pain, C. C.; Navon, I. M.; Muggeridge, A., Non-intrusive reduced order modelling of the Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 293 (2015), 522-541 · Zbl 1423.76287
[33] Bistrian, D. A.; Navon, I. M., Randomized dynamic mode decomposition for non-intrusive reduced order modelling, Internat. J. Numer. Methods Engrg., 112, 3-25 (2017)
[34] Xiao, D.; Yang, P.; Fang, F.; Xiang, J.; Pain, C. C.; Navon, I. M., Non-intrusive reduced order modeling of fluid-structure interactions, Comput. Methods Appl. Mech. Engrg., 303, 35-54 (2016) · Zbl 1425.74167
[35] Xiao, D.; Yang, P.; Fang, F.; Xiang, J.; Pain, C. C.; Navon, I. M.; Chen, M., A non-intrusive reduced-order model for compressible fluid and fractured solid coupling and its application to blasting, J. Comput. Phys., 330, 221-244 (2017) · Zbl 1378.74067
[36] Xiao, D.; Lin, Z.; Fang, F.; Pain, C. C.; Navon, I. M.; Salinas, P.; Muggeridge, A., Non-intrusive reduced-order modeling for multiphase porous media flows using smolyak sparse grids, Internat. J. Numer. Methods Fluids, 83, 2, 205-219 (2017)
[37] Xiao, D.; Fang, F.; Pain, C. C.; Navon, I. M.; Muggeridge, A., Non-intrusive reduced order modelling of waterflooding in geologically heterogeneous reservoirs, (ECMOR XV-15th European Conference on the Mathematics of Oil Recovery (2016))
[38] Xiao, D.; Fang, F.; Pain, C. C.; Navon, I. M., A parameterized non-intrusive reduced order model and error analysis for general time-dependent nonlinear partial differential equations and its applications, Comput. Methods Appl. Mech. Engrg., 317, 868-889 (2017) · Zbl 1439.65124
[39] Lucia, D. J.; King, P. I.; Beran, P. S., Reduced order modeling of a two-dimensional flow with moving shocks, Comput. & Fluids, 32, 7, 917-938 (2003) · Zbl 1040.76042
[40] Przemieniecki, J. S., Matrix structural analysis of substructures, AIAA J., 1, 1, 138-147 (1963)
[41] Navon, I. M.; Cai, Y., Domain decomposition and parallel processing of a finite element model of the shallow water equations, Comput. Methods Appl. Mech. Engrg., 106, 1-2, 179-212 (1993) · Zbl 0784.76052
[42] Cai, Y.; Navon, I. M., Parallel block preconditioning techniques for the numerical simulation of the shallow water flow using finite element methods, J. Comput. Phys., 122, 1, 39-50 (1995) · Zbl 0840.76031
[43] Berger-Vergiat, L.; Waisman, H., An overlapping domain decomposition preconditioning method for monolithic solution of shear bands, Comput. Methods Appl. Mech. Engrg., 318, 33-60 (2017) · Zbl 1439.74391
[44] Taverniers, S.; Tartakovsky, D. M., A tightly-coupled domain-decomposition approach for highly nonlinear stochastic multiphysics systems, J. Comput. Phys., 330, 884-901 (2017) · Zbl 1380.65184
[45] Bian, X.; Li, Z.; Karniadakis, G. E., Multi-resolution flow simulations by smoothed particle hydrodynamics via domain decomposition, J. Comput. Phys., 297, 132-155 (2015) · Zbl 1349.76663
[46] Baiges, J.; Codina, R.; Idelsohn, S., A domain decomposition strategy for reduced order models. application to the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 267, 23-42 (2013) · Zbl 1286.76028
[47] Amsallem, D.; Zahr, M. J.; Farhat, C., Nonlinear model order reduction based on local reduced-order bases, Internat. J. Numer. Methods Engrg., 92, 10, 891-916 (2012) · Zbl 1352.65212
[48] Chaturantabut, S., Temporal localized nonlinear model reduction with a priori error estimate, Appl. Numer. Math., 119, 225-238 (2017) · Zbl 1368.65189
[49] Kerfriden, P.; Goury, O.; Rabczuk, T.; Bordas, S. P.A., A partitioned model order reduction approach to rationalise computational expenses in nonlinear fracture mechanics, Comput. Methods Appl. Mech. Engrg., 256, 169-188 (2013) · Zbl 1352.74285
[50] Pau, G. S.H.; Shen, C.; Riley, W. J.; Liu, Y., Accurate and efficient prediction of fine-resolution hydrologic and carbon dynamic simulations from coarse-resolution models, Water Resour. Res., 52, 2, 791-812 (2016)
[51] Pau, G. S.H.; Bisht, G.; Riley, W. J., A reduced-order modeling approach to represent subgrid-scale hydrological dynamics for land-surface simulations: application in a polygonal tundra landscape, Geosci. Model Dev., 7, 5, 2091-2105 (2014)
[52] Lucia, D. J.; King, P. I.; Beran, P. S., Domain decomposition for reduced-order modeling of a flow with moving shocks, AIAA J., 40, 11, 2360-2362 (2002)
[53] Antil, H.; Heinkenschloss, M.; Hoppe, R. H.W.; Sorensen, D. C., Domain decomposition and model reduction for the numerical solution of PDE constrained optimization problems with localized optimization variables, Comput. Vis. Sci., 13, 6, 249-264 (2010) · Zbl 1220.65074
[54] Antil, H.; Heinkenschloss, M.; Hoppe, R. H.W., Domain decomposition and balanced truncation model reduction for shape optimization of the Stokes system, Optim. Methods Softw., 26, 4-5, 643-669 (2011) · Zbl 1227.49046
[55] Xiao, D.; Fang, F.; Pain, C. C.; Hu, G., Non-intrusive reduced order modelling of the Navier-Stokes equations based on RBF interpolation, Internat. J. Numer. Methods Fluids, 79, 11, 580-595 (2015) · Zbl 1455.76099
[56] Mongillo, M., Choosing basis functions and shape parameters for radial basis function methods, SIAM Undergrad. Res. Online, 4, 190-209 (2011)
[57] Pain, C. C.; Piggott, M. D.; Goddard, A. J.H.; Fang, F.; Gorman, G. J.; Marshall, D. P.; Eaton, M. D.; Power, P. W.; de Oliveira, C. R.E., Three-dimensional unstructured mesh ocean modelling, Ocean Model., 10, 1-2, 5-33 (2005)
[58] Pain, C. C.; Umpleby, A. P.; de Oliveira, C. R.E.; Goddard, A. J.H., Tetrahedral mesh optimisation and adaptivity for steady-state and transient finite element calculations, Comput. Methods Appl. Mech. Engrg., 190, 29-30, 3771-3796 (2001) · Zbl 1008.76041
[59] Aristodemou, E.; Boganegra, L. M.; Mottet, L.; Pavlidis, D.; Constantinou, A.; Pain, C. C.; Robins, A.; ApSimon, H., How tall buildings affect turbulent air flows and dispersion of pollution within a neighbourhood, Environ. Pollut., 233, 782-796 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.