×

zbMATH — the first resource for mathematics

Structural shape optimization of three dimensional acoustic problems with isogeometric boundary element methods. (English) Zbl 1441.74290
Summary: The boundary element method (BEM) is a powerful tool in computational acoustics, because the analysis is conducted only on structural surfaces, compared to the finite element method (FEM) which resorts to special techniques to truncate infinite domains. The isogeometric boundary element method (IGABEM) is a recent progress in the category of boundary element approaches, which is inspired by the concept of isogeometric analysis (IGA) and employs the spline functions of CAD as basis functions to discretize unknown physical fields. As a boundary representation approach, IGABEM is naturally compatible with CAD and thus can directly perform numerical analysis on CAD models, avoiding the cumbersome meshing procedure in conventional FEM/BEM and eliminating the difficulty of volume parameterization in isogeometric finite element methods. The advantage of tight integration of CAD and numerical analysis in IGABEM renders it particularly attractive in the application of structural shape optimization because (1) the geometry and the analysis can be interacted, (2) remeshing with shape morphing can be avoided, and (3) an optimized solution returns a CAD geometry directly without postprocessing steps. In the present paper, we apply the IGABEM to structural shape optimization of three dimensional exterior acoustic problems, fully exploiting the strength of IGABEM in addressing infinite domain problems and integrating CAD and numerical analysis. We employ the Burton-Miller formulation to overcome fictitious frequency problems, in which hyper-singular integrals are evaluated explicitly. The gradient-based optimizer is adopted and shape sensitivity analysis is conducted with implicit differentiation methods. The design variables are set to be the positions of control points which directly determine the shape of structures. Finally, numerical examples are provided to verify the algorithm.

MSC:
74S15 Boundary element methods applied to problems in solid mechanics
65N38 Boundary element methods for boundary value problems involving PDEs
65D07 Numerical computation using splines
74H45 Vibrations in dynamical problems in solid mechanics
76Q05 Hydro- and aero-acoustics
PDF BibTeX Cite
Full Text: DOI
References:
[1] Bordas, S. P.A.; Rabczuk, T.; Ródenas, J. J.; Kerfriden, P.; Moumnassi, M.; Belouettar, S., Alleviating the mesh burden in computational solid mechanics, Proc. ECT2010 (2010)
[2] Greengard, L.; Rokhlin, V., A fast algorithm for particle simulations, J. Comput. Phys., 73, 2, 325-348 (1987) · Zbl 0629.65005
[3] Zheng, C.; Bi, C.; Zhang, C.; Zhang, Y.; Chen, H., Fictitious eigenfrequencies in the BEM for interior acoustic problems, Eng. Anal. Bound. Elem., 104, 170-182 (2019) · Zbl 07063039
[4] Beylkin, G.; Coifman, R.; Rokhlin, V., Fast wavelet transforms and numerical algorithms I, Comm. Pure Appl. Math., 44, 2, 141-183 (1991) · Zbl 0722.65022
[5] Phillips, J. R.; White, J. K., A precorrected-FFT method for electrostatic analysis of complicated 3-D structures, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 16, 10, 1059-1072 (1997)
[6] Bebendorf, M., Approximation of boundary element matrices, Numer. Math., 86, 4, 565-589 (2000) · Zbl 0966.65094
[7] Perrey-Debain, E.; Trevelyan, J.; Bettess, P., Plane wave interpolation in direct collocation boundary element method for radiation and wave scattering: numerical aspects and applications, J. Sound Vib., 261, 5, 839-858 (2003) · Zbl 1237.74107
[8] Bériot, H.; Perrey-Debain, E.; Tahar, M. B.; Vayssade, C., Plane wave basis in Galerkin BEM for bidimensional wave scattering, Eng. Anal. Bound. Elem., 34, 2, 130-143 (2010) · Zbl 1244.76032
[9] Peake, M. J.; Trevelyan, J.; Coates, G., Novel basis functions for the partition of unity boundary element method for Helmholtz problems, Internat. J. Numer. Methods Engrg., 93, 9, 905-918 (2013) · Zbl 1352.65593
[10] Fischer, M.; Gaul, L., Fast BEM-FEM mortar coupling for acoustic – structure interaction, Internat. J. Numer. Methods Engrg., 62, 12, 1677-1690 (2005) · Zbl 1121.74473
[11] Zhao, W.; Chen, L.; Chen, H.; Marburg, S., Topology optimization of exterior acoustic-structure interaction systems using the coupled FEM-BEM method, Internat. J. Numer. Methods Engrg., 82, 12, 858-878 (2019)
[12] Chen, L. L.; Zheng, C. J.; Chen, H. B., FEM/wideband FMBEM coupling for structural-acoustic design sensitivity analysis, Comput. Methods Appl. Mech. Engrg., 276, 1-19 (2014) · Zbl 1423.74263
[13] Chen, L. L.; Chen, H. B.; Zheng, C. J.; Marburg, S., Structural – acoustic sensitivity analysis of radiated sound power using a finite element/ discontinuous fast multipole boundary element scheme, Int. J. Numer. Methods Fluids, 82, 858-878 (2016)
[14] Chen, L. L.; Marburg, S.; Chen, H. B.; Zhang, H.; Gao, H., An adjoint operator approach for sensitivity analysis of radiated sound power in fully coupled structural-acoustic systems, J. Comput. Acoust., 25, 01, 1750003 (2017)
[15] Natarajan, S.; Ooi, E. T.; Saputra, A.; Song, C., A scaled boundary finite element formulation over arbitrary faceted star convex polyhedra, Eng. Anal. Bound. Elem., 80, 218-229 (2017) · Zbl 1403.65217
[17] Christiansen, A. N.; Nobel-Jørgensen, M.; Aage, N.; Sigmund, O.; Bærentzen, J. A., Topology optimization using an explicit interface representation, Struct. Multidiscip. Optim., 49, 3, 387-399 (2014)
[18] Christiansen, A. N.; Bærentzen, J. A.; Nobel-Jørgensen, M.; Aage, N.; Sigmund, O., Combined shape and topology optimization of 3D structures, Comput. Graph., 46, 25-35 (2015)
[19] Lian, H.; Christiansen, A. N.; Tortorelli, D. A.; Sigmund, O.; Aage, N., Combined shape and topology optimization for minimization of maximal von Mises stress, Struct. Multidiscip. Optim., 55, 5, 1541-1557 (2017)
[20] Zhou, M.; Lian, H.; Sigmund, O.; Aage, N., Shape morphing and topology optimization of fluid channels by explicit boundary tracking, Internat. J. Numer. Methods Fluids, 88, 6, 296-313 (2018)
[21] Wang, M. Y.; Wang, X.; Guo, D., A level set method for structural topology optimization, Comput. Methods Appl. Mech. Engrg., 192, 1, 227-246 (2003) · Zbl 1083.74573
[22] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 39-41, 4135-4195 (2005) · Zbl 1151.74419
[23] Cottrell, J. A.; Reali, A.; Bazilevs, Y.; Hughes, T. J.R., Isogeometric analysis of structural vibrations, Comput. Methods Appl. Mech. Engrg., 195, 41-43, 5257-5296 (2006) · Zbl 1119.74024
[24] Benson, D. J.; Bazilevs, Y.; Hsu, M. C.; Hughes, T. J.R., Isogeometric shell analysis: The Reissner-Mindlin shell, Comput. Methods Appl. Mech. Engrg., 199, 5-8, 276-289 (2010) · Zbl 1227.74107
[25] Bazilevs, Y.; Michler, C.; Calo, V. M.; Hughes, T. J.R., Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes, Comput. Methods Appl. Mech. Engrg., 199, 13-16, 780-790 (2010) · Zbl 1406.76023
[26] Bazilevs, Y.; Calo, V. M.; Hughes, T. J.R.; Zhang, Y., Isogeometric fluid-structure interaction: theory, algorithms, and computations, Comput. Mech., 43, 3-37 (2008) · Zbl 1169.74015
[27] De Lorenzis, L.; Temizer, I.; Wriggers, P.; Zavarise, G., A large deformation frictional contact formulation using NURBS-based isogeometric analysis, Internat. J. Numer. Methods Engrg. (2011) · Zbl 1242.74104
[28] Nguyen, V. P.; Kerfriden, P.; Brino, M.; Bordas, S. P.A.; Bonisoli, E., Nitsche’s method for two and three dimensional NURBS patch coupling, Comput. Mech., 53, 6, 1163-1182 (2014) · Zbl 1398.74379
[30] Bazilevs, Y.; Calo, V. M.; Cottrell, J. A.; Evans, J. A.; Hughes, T. J.R.; Lipton, S.; Scott, M. A.; Sederberg, T. W., Isogeometric analysis using T-splines, Comput. Math. Appl., 199, 5-8, 229-263 (2010) · Zbl 1227.74123
[31] Nguyen-Thanh, N.; Kiendl, J.; Nguyen-Xuan, H.; Wüchner, R.; Bletzinger, K. U.; Bazilevs, Y.; Rabczuk, T., Rotation free isogeometric thin shell analysis using PHT-splines, Comput. Methods Appl. Mech. Engrg., 200, 47, 3410-3424 (2011) · Zbl 1230.74230
[32] Cirak, F.; Scott, M. J.; Antonsson, E. K.; Ortiz, M.; Schröder, P., Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision, Comput. Aided Des., 34, 2, 137-148 (2002)
[33] Scott, M. A.; Borden, M. J.; Verhoosel, C. V.; Sederberg, T. W.; Hughes, T. J.R., Isogeometric finite element data structures based on Bézier extraction of T-splines, Internat. J. Numer. Methods Engrg., 88, 2, 126-156 (2011) · Zbl 1242.65243
[34] Nguyen, V. P.; Anitescu, C.; Bordas, S. P.A.; Rabczuk, T., Isogeometric analysis: an overview and computer implementation aspects, Math. Comput. Simulation, 117, 89-116 (2015)
[35] Xu, G.; Mourrain, B.; Duvigneau, R.; Galligo, A., Constructing analysis-suitable parameterization of computational domain from CAD boundary by variational harmonic method, J. Comput. Phys., 252, 275-289 (2013) · Zbl 1349.65079
[36] Xu, G.; Mourrain, B.; Duvigneau, R.; Galligo, A., Optimal analysis-aware parameterization of computational domain in 3D isogeometric analysis, Comput. Aided Des., 45, 4, 812-821 (2013)
[37] Politis, C.; Ginnis, A. I.; Kaklis, P. D.; Belibassakis, K.; Feurer, C., An isogeometric BEM for exterior potential-flow problems in the plane, (Proceedings of SIAM/ACM Joint Conference on Geometric and Physical Modeling (2009))
[38] Simpson, R. N.; Bordas, S. P.A.; Trevelyan, J.; Rabczuk, T., A two-dimensional isogeometric boundary element method for elastostatic analysis, Comp. Methods Appl. Mech. Eng., 209-212, 87-100 (2012) · Zbl 1243.74193
[39] Simpson, R. N.; Bordas, S. P.A.; Lian, H.; Trevelyan, J., An isogeometric boundary element method for elastostatic analysis: 2D implementation aspects, Comput. Struct., 118, 2-12 (2013)
[40] Scott, M. A.; Simpson, R. N.; Evans, J. A.; Lipton, S.; Bordas, S. P.A.; Hughes, T. J.R.; Sederberg, T. W., Isogeometric boundary element analysis using unstructured T-splines, Comput. Methods Appl. Mech. Engrg., 254, 197-221 (2013) · Zbl 1297.74156
[41] Peng, X.; Atroshchenko, E.; Kerfriden, P.; Bordas, S. P.A., Linear elastic fracture simulation directly from CAD: 2D NURBS-based implementation and role of tip enrichment, Int. J. Fract., 204, 1, 55-78 (2017)
[42] Peng, X.; Atroshchenko, E.; Kerfriden, P.; Bordas, S. P.A., Isogeometric boundary element methods for three dimensional static fracture and fatigue crack growth, Comput. Methods Appl. Mech. Engrg., 316, 151-185 (2017)
[43] Ginnis, A. I.; Kostas, K. V.; Politis, C. G.; Kaklis, P. D.; Belibassakis, K. A.; Gerostathis, T. P.; Scott, M. A.; Hughes, T. J.R., Isogeometric boundary-element analysis for the wave-resistance problem using T-splines, Comput. Methods Appl. Mech. Engrg., 279, 425-439 (2014) · Zbl 1423.74270
[44] Beer, G.; Marussig, B.; Zechner, J.; Dünser, C.; Fries, T., Isogeometric boundary element analysis with elasto-plastic inclusions. part 1: plane problems, Comput. Methods Appl. Mech. Engrg., 308, 552-570 (2016)
[45] Beer, G.; Mallardo, V.; Ruocco, E.; Marussig, B.; Zechner, J.; Dünser, C.; Fries, T., Isogeometric boundary element analysis with elasto-plastic inclusions. part 2: 3-D problems, Comput. Methods Appl. Mech. Engrg., 315, 418-433 (2017)
[46] Liu, Z.; Majeed, M.; Cirak, F.; Simpson, R. N., Isogeometric FEM-BEM coupled structural-acoustic analysis of shells using subdivision surfaces, Internat. J. Numer. Methods Engrg., 113, 9, 1507-1530 (2018)
[47] Simpson, R. N.; Liu, Z.; Vazquez, R.; Evans, J. A., An isogeometric boundary element method for electromagnetic scattering with compatible B-spline discretizations, J. Comput. Phys., 362, 264-289 (2018) · Zbl 1390.78030
[48] Simpson, R. N.; Liu, Z., Acceleration of isogeometric boundary element analysis through a black-box fast multipole method, Eng. Anal. Bound. Elem., 66, 168-182 (2016) · Zbl 1403.65228
[49] Li, S.; Trevelyan, J.; Zhang, W.; Wang, D., Accelerating isogeometric boundary element analysis for 3-dimensional elastostatics problems through black-box fast multipole method with proper generalized decomposition, Internat. J. Numer. Methods Engrg., 114, 9, 975-998 (2018)
[50] Nguyen, B. H.; Tran, H. D.; Anitescu, C.; Zhuang, X.; Rabczuk, T., An isogeometric symmetric Galerkin boundary element method for two-dimensional crack problems, Comput. Methods Appl. Mech. Engrg., 306, 252-275 (2016)
[51] Feischl, M.; Gantner, G.; Praetorius, D., Reliable and efficient a posteriori error estimation for adaptive IGA boundary element methods for weakly-singular integral equations, Comput. Methods Appl. Mech. Engrg., 290, 362-386 (2015) · Zbl 1425.65200
[52] Feischl, M.; Gantner, G.; Haberl, A.; Praetorius, D., Optimal convergence for adaptive IGA boundary element methods for weakly-singular integral equations, Numer. Math., 136, 1, 147-182 (2017) · Zbl 1362.65131
[53] Simpson, R. N.; Scott, M. A.; Taus, M.; Thomas, D. C.; Lian, H., Acoustic isogeometric boundary element analysis, Comput. Methods Appl. Mech. Engrg., 269, 265-290 (2014) · Zbl 1296.65175
[54] Peake, M. J.; Trevelyan, J.; Coates, G., Extended isogeometric boundary element method (XIBEM) for three-dimensional medium-wave acoustic scattering problems, Comput. Methods Appl. Mech. Engrg., 284, 762-780 (2015) · Zbl 1425.65202
[55] Sören, K.; Hagelstein, N. C.; Zaleski, O.; Von Estorff, O., Evaluation of hypersingular and nearly singular integrals in the isogeometric boundary element method for acoustics, Comput. Methods Appl. Mech. Engrg., 325, 488-504 (2017)
[56] Li, K.; Qian, X., Isogeometric analysis and shape optimization via boundary integral, Comput. Aided Des., 43, 11, 1427-1437 (2011)
[57] Lian, H.; Kerfriden, P.; Bordas, S. P.A., Implementation of regularized isogeometric boundary element methods for gradient-based shape optimization in two-dimensional linear elasticity, Internat. J. Numer. Methods Engrg., 106, 12, 972-1017 (2016) · Zbl 1352.74467
[58] Lian, H.; Kerfriden, P.; Bordas, S. P.A., Shape optimization directly from CAD: An isogeometric boundary element approach using T-splines, Comput. Methods Appl. Mech. Engrg., 317, 1-41 (2017)
[59] Sun, S.; Yu, T.; Nguyen, T. T.; Atroshchenko, E.; Bui, T. Q., Structural shape optimization by IGABEM and particle swarm optimization algorithm, Eng. Anal. Bound. Elem., 88, 26-40 (2018) · Zbl 1403.74234
[60] Kostas, K. V.; Ginnis, A. I.; Politis, C. G.; Kaklis, P. D., Ship-hull shape optimization with a T-spline based BEM-isogeometric solver, Comput. Methods Appl. Mech. Engrg., 284, 611-622 (2015) · Zbl 1425.65201
[61] Chen, L. L.; Liu, C.; Zhao, W. C.; C., L. L., An isogeometric approach of two dimensional acoustic design sensitivity analysis and topology optimization analysis for absorbing material distribution, Comput. Methods Appl. Mech. Engrg., 336, 507-532 (2018)
[62] Liu, C.; Chen, L.; Zhao, W.; Chen, H., Shape optimization of sound barrier using an isogeometric fast multipole boundary element method in two dimensions, Eng. Anal. Bound. Elem., 85, 142-157 (2017) · Zbl 1403.76092
[63] Guiggiani, M.; Casalini, P., Direct computation of Cauchy principal value integrals in advanced boundary elements, Internat. J. Numer. Methods Engrg., 24, 9, 1711-1720 (1987) · Zbl 0635.65020
[64] Svanberg, K., The method of moving asymptotes – a new method for structural optimization, Internat. J. Numer. Methods Engrg., 24, 359-373 (1987) · Zbl 0602.73091
[65] Rokhlin, V., Rapid solution of integral equations of classical potential theory, J. Comput. Phys., 60, 2, 187-207 (1985) · Zbl 0629.65122
[66] Li, S.; Trevelyan, J.; Wu, Z.; Lian, H.; Wang, D.; Zhang, W., An adaptive SVD-Krylov reduced order model for surrogate based structural shape optimization through isogeometric boundary element method, Comput. Methods Appl. Mech. Engrg., 349, 312-338 (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.