×

zbMATH — the first resource for mathematics

A stable discontinuity-enriched finite element method for 3-D problems containing weak and strong discontinuities. (English) Zbl 1441.74284
Summary: A new enriched finite element technique, named the Discontinuity-Enriched Finite Element Method (DE-FEM), was introduced recently for solving problems with both weak and strong discontinuities in 2-D. In this mesh-independent procedure, enriched degrees of freedom are added to new nodes collocated at the intersections between discontinuities and the sides of finite elements of the background mesh. In this work we extend DE-FEM to 3-D and describe in detail the implementation of a geometric engine capable of handling interactions between discontinuities and the background mesh. Several numerical examples in linear elastic fracture mechanics demonstrate the capability and performance of DE-FEM in handling discontinuities in a fully mesh-independent manner. We compare convergence properties and the ability to extract stress intensity factors with standard FEM. Most importantly, we show DE-FEM provides a stable formulation with regard to the condition number of the resulting system stiffness matrix.
MSC:
74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
Software:
TetGen
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aragón, A. M.; Simone, A., The discontinuity-enriched finite element method, Internat. J. Numer. Methods Engrg., 112, 11, 1589-1613 (2017)
[2] Tracey, D. M., Finite elements for determination of crack tip elastic stress intensity factors, Eng. Fract. Mech., 3, 3, 255-265 (1971)
[3] Barsoum, R. S., On the use of isoparametric finite elements in linear fracture mechanics, Internat. J. Numer. Methods Engrg., 10, 1, 25-37 (1976) · Zbl 0321.73067
[4] Shewchuk, J. R., What is a good linear finite element? - interpolation, conditioning, anisotropy, and quality measures (2002), In Proc. of the 11th International Meshing Roundtable
[5] Du, Q.; Wang, D., Recent progress in robust and quality delaunay mesh generation, J. Comput. Appl. Math., 195, 1, 8-23 (2006) · Zbl 1096.65016
[6] Rangarajan, R.; Lew, A. J., Universal meshes: A method for triangulating planar curved domains immersed in nonconforming meshes, Internat. J. Numer. Methods Engrg., 98, 4, 236-264 (2014) · Zbl 1352.65617
[7] Soghrati, S.; Xiao, F.; Nagarajan, A., A conforming to interface structured adaptive mesh refinement technique for modeling fracture problems, Comput. Mech., 59, 4, 667-684 (2017)
[8] Oden, J. T.; Duarte, C. A.; Zienkiewicz, O. C., A new cloud-based hp finite element method, Comput. Methods Appl. Mech. Engrg., 153, 117-126 (1998) · Zbl 0956.74062
[9] Moës, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Internat. J. Numer. Methods Engrg., 46, 1, 131-150 (1999) · Zbl 0955.74066
[10] Fries, T. P.; Belytschko, T., The extended/generalized finite element method: An overview of the method and its applications, Internat. J. Numer. Methods Engrg., 84, 3, 253-304 (2010) · Zbl 1202.74169
[11] Duarte, C. A.; Hamzeh, O. N.; Liszka, T. J.; Tworzydlo, W. W., A generalized finite element method for the simulation of three-dimensional dynamic crack propagation, Comput. Methods Appl. Mech. Engrg., 190, 15, 2227-2262 (2001) · Zbl 1047.74056
[12] Sukumar, N.; Moës, N.; Belytschko, T.; Moran, B., Extended finite element method for three-dimensional crack modelling, Internat. J. Numer. Methods Engrg., 48, 11, 1549-1570 (2000) · Zbl 0963.74067
[13] Belytschko, T.; Moës, N.; Usui, S.; Parimi, C., Arbitrary discontinuities in finite elements, Internat. J. Numer. Methods Engrg., 50, 993-1013 (2001) · Zbl 0981.74062
[14] Babuška, I.; Banerjee, U.; Osborn, J. E., Survey of meshless and generalized finite element methods: A unified approach, Acta Numer., 12, 1-125 (2003) · Zbl 1048.65105
[15] Moës, N.; Béchet, E.; Tourbier, M., Imposing Dirichlet boundary conditions in the extended finite element method, Internat. J. Numer. Methods Engrg., 67, 12, 1641-1669 (2006) · Zbl 1113.74072
[16] Babuška, I.; Banerjee, U., Stable generalized finite element method (SGFEM), Comput. Methods Appl. Mech. Engrg., 201-204, 91-111 (2012) · Zbl 1239.74093
[17] Kergrene, K.; Babuška, I.; Banerjee, U., Stable generalized finite element method and associated iterative schemes; application to interface problems, Comput. Methods Appl. Mech. Engrg., 305, 1-36 (2016) · Zbl 1425.74472
[18] Babuška, I.; Banerjee, U.; Kergrene, K., Strongly stable generalized finite element method: Application to interface problems, Comput. Methods Appl. Mech. Engrg., 327, 58-92 (2017)
[19] Gupta, V.; Duarte, C.; Babuška, I.; Banerjee, U., A stable and optimally convergent generalized FEM (SGFEM) for linear elastic fracture mechanics, Comput. Methods Appl. Mech. Engrg., 266, 23-39 (2013) · Zbl 1286.74102
[20] Gupta, V.; Duarte, C.; Babuška, I.; Banerjee, U., Stable GFEM (SGFEM): Improved conditioning and accuracy of GFEM/XFEM for three-dimensional fracture mechanics, Comput. Methods Appl. Mech. Engrg., 289, 355-386 (2015) · Zbl 1423.74886
[21] Zhang, Q.; Babuška, I.; Banerjee, U., Robustness in stable generalized finite element methods (SGFEM) applied to poisson problems with crack singularities, Comput. Methods Appl. Mech. Engrg., 311, 476-502 (2016)
[22] Chessa, J.; Wang, H.; Belytschko, T., On the construction of blending elements for local partition of unity enriched finite elements, Internat. J. Numer. Methods Engrg., 57, 7, 1015-1038 (2003) · Zbl 1035.65122
[23] Fries, T. P., A corrected XFEM approximation without problems in blending elements, Internat. J. Numer. Methods Engrg., 75, 5, 503-532 (2008) · Zbl 1195.74173
[24] Ventura, G.; Gracie, R.; Belytschko, T., Fast integration and weight function blending in the extended finite element method, Internat. J. Numer. Methods Engrg., 77, 1, 1-29 (2009) · Zbl 1195.74201
[25] Sukumar, N.; Prévost, J. H., Modeling quasi-static crack growth with the extended finite element method part i: Computer implementation, Int. J. Solids Struct., 40, 26, 7513-7537 (2003) · Zbl 1063.74102
[26] Park, K.; Pereira, J. P.; Duarte, C. A.; Paulino, G. H., Integration of singular enrichment functions in the generalized/extended finite element method for three-dimensional problems, Internat. J. Numer. Methods Engrg., 78, 10, 1220-1257 (2008) · Zbl 1183.74305
[27] van den Boom, S. J.; Zhang, J.; van Keulen, F.; Aragón, A. M., A stable interface-enriched formulation for immersed domains with strong enforcement of essential boundary conditions, Internat. J. Numer. Methods Engrg. (2019)
[28] Soghrati, S.; Aragón, A. M.; Duarte, C. A.; Geubelle, P. H., An interface-enriched generalized fem for problems with discontinuous gradient fields, Internat. J. Numer. Methods Engrg., 89, 8, 991-1008 (2012) · Zbl 1242.76138
[29] Soghrati, S., Hierarchical interface-enriched finite element method: An automated technique for mesh-independent simulations, J. Comput. Phys., 275, 41-52 (2014) · Zbl 1349.82030
[30] Soghrati, S.; Geubelle, P. H., A 3D interface-enriched generalized finite element method for weakly discontinuous problems with complex internal geometries, Comput. Methods Appl. Mech. Engrg., 217, 46-57 (2012) · Zbl 1253.74117
[31] Aragón, A. M.; Soghrati, S.; Geubelle, P. H., Effect of in-plane deformation on the cohesive failure of heterogeneous adhesives, J. Mech. Phys. Solids, 61, 1600-1611 (2013)
[32] Soghrati, S.; Najafi, A. R.; Lin, J. H.; Hughes, K. M.; White, S. R.; Sottos, N. R.; Geubelle, P. H., Computational analysis of actively-cooled 3D woven microvascular composites using a stabilized interface-enriched generalized finite element method, Int. J. Heat Mass Transfer, 65, 153-164 (2013)
[33] Ramos, A. C.; Aragón, A. M.; Soghrati, S.; Geubelle, P. H.; Molinari, J., A new formulation for imposing Dirichlet boundary conditions on non-matching meshes, Internat. J. Numer. Methods Engrg., 103, 6, 430-444 (2015) · Zbl 1352.65488
[34] Soghrati, S.; Ahmadian, H., 3D Hierarchical interface-enriched finite element method: Implementation and applications, J. Comput. Phys., 299, 45-55 (2015) · Zbl 1352.65551
[35] Safdari, M.; Najafi, A. R.; Sottos, N. R.; Geubelle, P. H., A nurbs-based generalized finite element scheme for 3D simulation of heterogeneous materials, J. Comput. Phys., 318, 373-390 (2016) · Zbl 1349.65632
[36] Soghrati, S.; Merel, R. A., NURBS enhanced HIFEM: A fully mesh-independent method with zero geometric discretization error, Finite Elem. Anal. Des., 120, 68-79 (2016)
[37] Aragón, A. M.; Molinari, J.-F., A hierarchical detection framework for computational contact mechanics, Comput. Methods Appl. Mech. Engrg., 268, 574-588 (2014) · Zbl 1295.74097
[38] Salzman, A.; Moës, N.; Chevaugeon, N., On use of the thick level set method in 3D quasi-static crack simulation of quasi-brittle material, Int. J. Fract., 202, 1, 21-49 (2016)
[39] Si, H., Tetgen, a Delaunay-based quality tetrahedral mesh generator, ACM Trans. Math. Softw. (TOMS), 41, 2, 11:1-11:36 (2015) · Zbl 1369.65157
[41] Zhang, Q.; Cen, S., Multiphysics Modeling: Numerical Methods and Engineering Applications: Tsinghua University Press Computational Mechanics Series (2015), Elsevier
[42] Nakamura, T.; Parks, D. M., Antisymmetrical 3-d stress field near the crack front of a thin elastic plate, Int. J. Solids Struct., 25, 12, 1411-1426 (1989)
[43] Nagai, M.; Ikeda, T.; Miyazaki, N., Stress intensity factor analyses of three-dimensional interface cracks using tetrahedral finite elements, Comput. Mech., 51, 5, 603-615 (2013) · Zbl 1308.74022
[44] Tada, H.; Paris, P.; Irwin, G., The Stress Analysis of Cracks Handbook (2000), Wiley
[45] Raju, I. S.; Newman Jr, J. C., Three dimensional finite-element analysis of finite-thickness fracture specimens (1977), NASA Langley Research Center; Hampton, VA, United States
[46] Pereira, J. P.; Duarte, C. A.; Guoy, D.; Jiao, X., hp-Generalized FEM and crack surface representation for non-planar 3-D cracks, Internat. J. Numer. Methods Engrg., 77, 5, 601-633 (2009) · Zbl 1156.74383
[48] Launeym, M. E.; Buehler, M. J.; Ritchie, R. O., On the mechanistic origins of toughness in bone, Annu. Rev. Mater. Res., 40, 1, 25-53 (2010)
[49] Rho, Y. J.; Ashman, B. R.; Turner, H. C., Young’s modulus of trabecular and cortical bone material: Ultrasonic and microtensile measurements, J. Biomech., 26, 2, 111-119 (1993)
[50] Wirtz, D. C.; Schiffers, N.; Pandorf, T.; Radermacher, K.; Weichert, D.; Forst, R., Critical evaluation of known bone material properties to realize anisotropic FE-simulation of the proximal femur, J. Biomech., 33, 10, 1325-1330 (2000)
[51] Aragón, A. M.; Duarte, C. A.; Geubelle, P. H., Generalized finite element enrichment functions for discontinuous gradient fields, Internat. J. Numer. Methods Engrg., 82, 2, 242-268 (2010) · Zbl 1188.74051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.